Desarrollo de un ánodo flexible para baterías ion-litio de microfibras compuestas de carbono-magnetita electrohiladas

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210319

Palabras clave:

Electroquímica, Conversión de energía, material compuesto, Carbón, Hierro

Resumen

El desarrollo de material libre de aglutinantes está ganando terreno como ánodo flexible en las baterías de iones de litio debido a la mayor capacidad específica y a las posibilidades de uso en aparatos portátiles. En este trabajo, las nanopartículas de magnetita (Fe3O4-NPs) se incorporaron a microfibras de carbono (CMFs) mediante la técnica de electrohilado para mejorar la densidad energética del material activo conservando la alta flexibilidad de las CMFs. El material activo compuesto (CMFs-Fe3O4) se caracterizó por espectroscopía Raman, análisis termogravimétricos (TGA) y microscopía electrónica de transmisión (TEM) para determinar la composición, estructura y morfología del compuesto. Se realizaron pruebas electroquímicas para evaluar el desempeño del material compuesto como ánodo en baterías de iones de litio. Se incorporaron Fe3O4-NP con un tamaño de partícula de 30-40 nm en CNF (800 nm) y las imágenes TEM mostraron una distribución homogénea de Fe3O4-NP. Las pruebas electroquímicas evidenciaron que la incorporación de magnetita aumenta la capacidad específica en un 42% en el primer ciclo y en un 20% en el ciclo 50. De la misma forma, la eficiencia coulómbica aumenta un 20% en el material compuesto.

|Resumen
= 1108 veces | PDF (ENGLISH)
= 350 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Andrés Velásquez-Márquez, Universidad de Antioquia

Investigador asociado CIDEMAT

Ferley Alejandro Vásques-Arroyave, Universidad de Antioquia

Investigador asociado, CIDEMAT

Mónica Lucía Álvarez-Láinez, Universidad EAFIT

Investigador asociado GRID

Andrés Felipe Zapata-González, Universidad EAFIT

Investigador asociado GRID

Jorge Andrés Calderón-Gutiérrez, Universidad de Antioquia

Investigador asociado CIDEMAT

Citas

L. Grajales, F. Arroyave, J. Thomas, and J. Gutiérrez, “Evaluation of the effect of the synthesis method on the performance of manganese spinel as cathode material in lithium-ion batteries,” revista Facultad de Ingeniería Universidad de Antioquia, vol. 87, Apr. 2018. [Online]. Available: https://doi.org/10.17533/udea.redin.n87a06

C. Julien, A. Mauger, A. Vijh, and K. Zaghib, Lithium Batteries. New York: Springer, 2016.

L. Guo and et al., “Flexible fe3o4 nanoparticles/n-doped carbon nanofibers hybrid film as binder-free anode materials for lithium-ion batteries,” Applied Surface Science, vol. 459, nov. 2018. [Online]. Available: https://doi.org/10.1016/j.apsusc.2018.08.001

C. H. Wu and et al., “Performance improvement of lithium ion batteries using magnetite–graphene nanocomposite anode materials synthesized by a microwave-assisted method,” Microelectronic Engineering, vol. 138, Apr. 2015. [Online]. Available: https://doi.org/10.1016/j.mee.2015.01.022

Y. T. et al., “The fabrication of hollow magnetite microspheres with a nearly 100batteries,” Chinese Chemical Letters, vol. 27, no. 6, Jun. 2016. [Online]. Available: https://doi.org/10.1016/j.cclet.2016.02.003

Y. C. et al., “γ-fe2o3 nanoparticles aligned in porous carbon nanofibers towards long life-span lithium ion batteries,” Electrochimica Acta, vol. 289, nov. 2018. [Online]. Available: https://doi.org/10.1016/j.electacta.2018.08.088

Q. W. et al., “Synthesis of flexible fe3o4/c nanofibers with buffering volume expansion performance and their application in lithium-ion batteries,” Journal of Power Sources, vol. 359, Aug. 2017. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2017.05.020

T. Wang and S. Kumar, “Electrospinning of polyacrylonitrile nanofibers,” Applied Polymer Science, vol. 102, no. 2, Oct. 15 2006. [Online]. Available: https://doi.org/10.1002/app.24123

A. Mateus and S. Daza, “Producción de nanofibras poliméricas mediante el proceso de electrospinning y su uso potencial,” Revista Mutis, vol. 8, no. 1, 2018. [Online]. Available: https://doi.org/10.21789/22561498.1375

O. F. et al., “Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance,” Carbon, vol. 128, Mar. 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2017.11.065

T. Marín, D. Ortega, P. Montoya, and O. A. . J. Calderón, “A new contribution to the study of the electrosynthesis of magnetic nanoparticles: the influence of the supporting electrolyte,” J Appl Electrochem, vol. 44, 2014. [Online]. Available: https://doi.org/10.1007/s10800-014-0766-z

A. Zapata, J. Cano, and M. Álvarez, “Driving commerce to the web—corporate intranets and the internet: Lines blur,” Adv. Mater. Lett., vol. 10, no. 8, Feb. 15 2019. [Online]. Available: https://doi.org/10.5185/amlett.2019.9902

I. Martínez, C. Gutiérrez, C. Argánis, and A. Vilchis, “Reduction of maghemite to magnetite over 304ss, in the presence of silver nanoparticles,” Surface and Coatings Technology, vol. 324, Sep. 2017. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2017.05.079

T. L. et al., “Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries,” Journal of the Taiwan Institute of Chemical Engineers, vol. 95, Feb. 2019. [Online]. Available: https://doi.org/10.1016/j.jtice.2018.07.005

L. J. et al., “α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries,” Applied Materials & Interfaces, vol. 4, no. 5, Apr. 23 2012. [Online]. Available: https://doi.org/10.1021/am300333s

Y. L. et al., “Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors,” Electrochimica Acta, vol. 271, May 1 2018. [Online]. Available: https://doi.org/10.1016/j.electacta.2018.03.199

N. Gallego and D.Edie, “Structure–property relationships for high thermal conductivity carbon fibers,” Composites Part A: Applied Science and Manufacturing, vol. 32, no. 8, Aug. 2001. [Online]. Available: https://doi.org/10.1016/S1359-835X(00)00175-5

B. Weidenfeller, M. Höfer, and F. Schilling, “Thermal and electrical properties of magnetite filled polymers,” Composites Part A: Applied Science and Manufacturing, vol. 33, no. 8, Aug. 1 2002. [Online]. Available: https://doi.org/10.1016/S1359-835X(02)00085-4

Z. L. et al., “Two-step oxalate approach for the preparation of high performance lini0.5mn1.5o4 cathode material with high voltage,” Journal of Power Sources, vol. 247, Feb. 1 2014. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2013.09.002

E. T. et al. (2003) Young’s modulus - tensile and yield strength for common materials. [Ebrary version]. [Online]. [Online]. Available: https://www.engineeringtoolbox.com/young-modulus-d_417.html

M. R. et al., “Investigation of lithium content changes to understand the capacity fading mechanism in lifepo4/graphite battery,” Journal of Electroanalytical Chemistry, vol. 853, Nov. 15 2019. [Online]. Available: https://doi.org/10.1016/j.jelechem.2019.113544

M. X. et al., “Improving the electrochemical properties of a sio@c/graphite composite anode for high-energy lithium-ion batteries by adding lithium fluoride,” Applied Surface Science, vol. 480, Jun. 30 2019. [Online]. Available: https://doi.org/10.1016/j.apsusc.2019.02.207

S. W. et al., “Composite nanofibers through in-situ reduction with abundant active sites as flexible and stable anode for lithium ion batteries,” Composites Part B: Engineering, vol. 161, Mar. 15 2019. [Online]. Available: https://doi.org/10.1016/j.compositesb.2018.12. 039

G. Z. et al., “Zn-mofs derived porous carbon nanofiber for high performance lithium-ion batteries,” Surface and Coatings Technology, vol. 359, Feb. 15 2019. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2018.12.075

Q. L. et al., “High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries,” Electrochimica Acta, vol. 212, Sep. 10 2016. [Online]. Available: https://doi.org/10.1016/j.electacta.2016.06.135

J. Z. et al., “Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries,” Carbon, vol. 94, Nov. 2015. [Online]. Available: https://doi.org/10.1016/j.carbon.2015.06.076

L. H. et al., “Free-standing n-doped carbon nanofibers/carbon nanotubes hybrid film for flexible, robust half and full lithium-ion batteries,” Chemical Engineering Journal, vol. 334, Feb. 15 2018. [Online]. Available: https://doi.org/10.1016/j.cej.2017.10.030

S. Yenet al., “Flexible free-standing carbon nanotube films for model lithium-ion batteries,” Carbon, vol. 47, no. 13, Nov. 2009. [Online]. Available: https://doi.org/10.1016/j.carbon.2009.06.045

Q. Wu, R. Jiang, and H. Liu, “Carbon layer encapsulated fe3o4@reduced graphene oxide lithium battery anodes with long cycle performance,” Ceramics International, vol. 46, no. 8, Jun. 1 2020. [Online]. Available: https://doi.org/10.1016/j.ceramint.2020.02.041

M. Zhang and M. Jia, “High rate capability and long cycle stability fe3o4–graphene nanocomposite as anode material for lithium ion batteries,” Journal of Alloys and Compounds, vol. 551, Feb. 25 2013. [Online]. Available: https://doi.org/10.1016/j.jallcom.2012.09.115

B. Hirschornet al., “Determination of effective capacitance and film thickness from constant-phase-element parameters,” Electrochimica Acta, vol. 55, no. 21, Aug. 30 2010. [Online]. Available: https://doi.org/10.1016/j.electacta.2009.10.065

J. Bisquert, G. Garcia, F. Fabregat, and P. Bueno, “Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion,” Journal of Electroanalytical Chemistry, vol. 475, no. 2, Oct. 14 1999. [Online]. Available: https://doi.org/10.1016/S0022-0728(99)00346-0

J. Schmidtet al., “Studies on lifepo4 as cathode material using impedance spectroscopy,” Journal of Power Sources, vol. 196, no. 12, Jun. 15 2011. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2010.09.121

Descargas

Publicado

2021-03-09

Cómo citar

Velásquez-Márquez, C. A. ., Vásques-Arroyave, F. A., Álvarez-Láinez, M. L., Zapata-González, A. F., & Calderón-Gutiérrez, J. A. (2021). Desarrollo de un ánodo flexible para baterías ion-litio de microfibras compuestas de carbono-magnetita electrohiladas. Revista Facultad De Ingeniería Universidad De Antioquia, (106), 94–102. https://doi.org/10.17533/udea.redin.20210319

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

También puede {advancedSearchLink} para este artículo.