Optimización topológica multiobjetivo de armaduras planas usando trayectorias de esfuerzo y algoritmos metaheurísticos

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20220576

Palabras clave:

Multiobjetivo, Optimización topológica, Armadura de gran escala, Trayectorias de esfuerzo, Algoritmos metaheurísticos

Resumen

En ingeniería civil, la optimización estructural busca un uso eficiente de recursos materiales y la automatización del proceso de diseño de un amplio rango de estructuras como pórticos y puentes, entre otros sistemas. En este trabajo se desarrolla un novedoso proceso de optimización topológica multiobjetivo para minimizar el peso y la energía de deformación de armaduras planas. En una fase inicial, una geometría discreta optimizada de la estructura base es generada a partir de un espacio de diseño continuo con condiciones de borde conocidas (cargas y apoyos) usando la teoría de las trayectorias de esfuerzo. En la fase final, se ejecuta optimización de tamaño usando el concepto de frente de Pareto Envolvente (EVP), que se obtiene de las mejores soluciones proporcionadas por tres algoritmos metaheurísticos de optimización multiobjetivo (NSGA-II, MOPSO y AMOSA) eficientes. Los resultados obtenidos en una estructura de gran escala (Puente continuo de 200 m de luz) mostraron que, usando el proceso propuesto, pueden encontrarse geometrías innovadoras (nuevos patrones de conectividad), y la generación de un EVP que permite obtener un mayor número de soluciones no dominadas a lo largo de las dos funciones objetivo, logrando una mayor convergencia y diversidad en comparación con el desempeño individual de los algoritmos. El costo computacional de la estrategia de optimización fue satisfactorio, lo cual permite una aplicación potencial en armaduras reales de gran escala, descubriendo soluciones innovadoras optimizadas para este tipo de estructuras.

|Resumen
= 984 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 454 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Humberto Niño-Álvarez, Universidad Industrial de Santander

Magister en Ingeniería civil, Escuela de Ingeniería Civil

Oscar Javier Begambre-Carrillo, Universidad industrial de Santander

Doctor en Ingeniería Estructural, Profesor Facultad de Ingeniería Civil

Citas

A. H. Gandomi, X. S. Yang, S. Talatahari, and A. H. Alavi. (2013) Metaheuristic applications in structures and infrastructures. [Online]. Available: https://cutt.ly/jH99mWN

M. P. Saka, O. Hasançebi, , and Z. W. Geem, “Metaheuristics in structural optimization and discussions on harmony search algorithm,” Swarm and Evolutionary Computation, vol. 28, Jun. 2016. [Online]. Available: https://doi.org/10.1016/j.swevo.2016.01.005

J. S. Arora. (2017) Introduction to optimum design, 4th ed. [Online]. Available: https://cutt.ly/wH93ygB

A. Mortazavi and V. Toğan, “Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm,” Applied Soft Computing, vol. 51, Feb. 2017. [Online]. Available: https://doi.org/10.1016/j.asoc.2016.11.032

A. Kaveh and M. I. Ghazaan. (2018) Meta-heuristic algorithms for optimal design of real-size structures, 1st ed. [Online]. Available: https://cutt.ly/4H98LDK

I. Couceiro, J. París, S. Martínez, I. Colominas, F. Navarrina, and et al., “Structural optimization of lattice steel transmission towers,” Engineering Structures, vol. 117, Jun. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.engstruct.2016.03.005

C. M. Páramo, “Diseño óptimo de armaduras empleando optimización con ondas del agua,” INGE CUC, vol. 13, no. 2, Jul. 2, 2017. [Online]. Available: https://cutt.ly/bH94Liu

S. R. Echeverry and J. D. V. Morales, “Optimización de armaduras espaciales de acero utilizando algoritmos genéticos auto-adaptados: una primera aproximación,” Ingeniería y Competitividad, vol. 23, no. 1, Nov. 10, 2020. [Online]. Available: https://doi.org/10.25100/iyc.v23i1.7337

R. R. de Souza, L. F. F. Miguel, R. H. Lopez, L. F. F. Miguel, and A. J. Torii, “A procedure for the size, shape and topology optimization of transmission line tower structures,” Engineering Structures, vol. 111, Mar. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.engstruct.2015.12.005

C. Tort, S. Şahin, and O. Hasançebi, “Optimum design of steel lattice transmission line towers using simulated annealing and pls-tower,” Computers & Structures, vol. 179, Jan. 15, 2017. [Online]. Available: https://doi.org/10.1016/j.compstruc.2016.10.017

H. Assimi and A. Jamali, “A hybrid algorithm coupling genetic programming and nelder–mead for topology and size optimization of trusses with static and dynamic constraints,” Expert Systems with Applications, vol. 95, Apr. 1, 2018. [Online]. Available: https://doi.org/10.1016/j.eswa.2017.11.035

G. G. Tejani, V. J. Savsani, V. K. Patel, and P. V. Savsani, “Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics,” Journal of computational desing and engineering, vol. 5, no. 2, Apr. 2018. [Online]. Available: https://doi.org/10.1016/j.jcde.2017.10.001

G. Zavala, A. J. Nebro, F. Luna, and C. A. C. Coello, “Structural design using multi-objective metaheuristics. comparative study and application to a real-world problem,” Structural and Multidisciplinary Optimization, vol. 53, no. 3, Oct. 29, 2015. [Online]. Available: https://doi.org/10.1007/s00158-015-1291-3

A. P. Villegas-Quiceño, J. P. Arias-Echeverri, D. Aragón-Mena, S. Ochoa-Cáceres, and M. E. Arias-Zabala, “Multi-objective optimization in biotechnological processes: application to plant cell suspension cultures of thevetia peruviana,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 87, Jun. 2018. [Online]. Available: https://doi.org/10.17533/udea.redin.n87a05

L. F. F. Miguel, R. H. Lopez, and L. F. F. Miguel, “Multimodal size, shape, and topology optimisation of truss structures using the firefly algorithm,” Advances in Engineering Software, vol. 56, Feb. 2013. [Online]. Available: https://doi.org/10.1016/j.advengsoft.2012.11.006

M. S. Gonçalves, R. H. Lopez, and L. F. F. Miguel, “Search group algorithm: A new metaheuristic method for the optimization of truss structures,” Computers & Structures, vol. 153, Jun. 2015. [Online]. Available: https://doi.org/10.1016/j.compstruc.2015.03.003

G. G. Tejani, V. J. Savsani, S. Bureerat, V. K. Patel, and P. Savsani, “G. g. tejani, v. j. savsani, s. bureerat, v. k. patel, and p. savsani,” Engineering with Computers, vol. 35, no. 2, May. 8, 2018. [Online]. Available: https://doi.org/10.1007/s00366-018-0612-8

J. N. Richardson, S. Adriaenssens, P. Bouillard, and R. F. Coelho, “Multiobjective topology optimization of truss structures with kinematic stability repair,” Structural and Multidisciplinary Optimization, vol. 46, no. 4, Feb. 28, 2012. [Online]. Available: https://doi.org/10.1007/s00158-012-0777-5

G. G. Tejani, N. Pholdee, S. Bureerat, and D. Prayogo, “Multiobjective adaptive symbiotic organisms search for truss optimization problems,” Knowledge-Based Systems, vol. 161, Dec. 2018. [Online]. Available: https://doi.org/10.1016/j.knosys.2018.08.005

H. Assimi, A. Jamali, and N. Nariman-zadeh, “Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator,” Neural Computing and Applications, vol. 31, no. 10, Mar. 2, 2018. [Online]. Available: https://doi.org/10.1007/s00521-018-3401-9

P. Tomšič and J. Duhovnik, “Simultaneous topology and size optimization of 2d and 3d trusses using evolutionary structural optimization with regard to commonly used topologies,” Advances in Mechanical Engineering, Jan. 1, 2014. [Online]. Available: https://doi.org/10.1155/2014/864807

A. Tugilimana, R. F. Coelho, and A. P. Thrall, “An integrated design methodology for modular trusses including dynamic grouping, module spatial orientation, and topology optimization,” Structural and Multidisciplinary Optimization, vol. 60, no. 2, Apr. 1, 2019. [Online]. Available: https://doi.org/10.1007/s00158-019-02230-w

N. Noilublao and S. Bureerat, “Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms,” Computers & Structures, vol. 89, Dec, 2011. [Online]. Available: https://doi.org/10.1016/j.compstruc.2011.08.010

S. O. Degertekin, L. Lamberti, and I. B. Ugur, “Discrete sizing/layout/topology optimization of truss structures with an advanced jaya algorithm,” S. O. Degertekin, L. Lamberti, and I. B. Ugur, vol. 79, Jun. 2019. [Online]. Available: https://doi.org/10.1016/j.asoc.2019.03.058

V. Mokarram and M. R. Banan, “A new pso-based algorithm for multi-objective optimization with continuous and discrete design variables,” Structural and Multidisciplinary Optimization, vol. 57, no. 2, Jul. 26, 2018. [Online]. Available: https://doi.org/10.1007/s00158-017-1764-7

G. Dhiman and V. Kumar, “Multi-objective spotted hyena optimizer: A multi-objective optimization algorithm for engineering problems,” Knowledge-Based Systems, vol. 150, Jun. 15, 2018. [Online]. Available: https://doi.org/10.1016/j.knosys.2018.03.011

A. Kaveh and V. R. Mahdavi, “Multi-objective colliding bodies optimization algorithm for design of trusses,” Journal of computational desing and engineering, vol. 6, no. 1, Apr. 11, 2018. [Online]. Available: https://doi.org/10.1016/j.jcde.2018.04.001

L. Niño-Alvarez, J. Guevara-Corzo, and O. Begambre-Carrillo, “Diseño automático de cerchas de gran escala: una comparación entre algoritmos libres de derivadas,” Ingeniería y Ciencia, vol. 16, no. 32, Nov. 202. [Online]. Available: https://doi.org/10.17230/ingciencia.16.32.4

M. P. Bendsøe and O. Sigmund. (2004) Topology optimization: Theory, methods, and applications, 2nd ed. [Online]. Available: https://cutt.ly/rJrTMhm

G. Gao, Z. Liu, Y. Li, and Y. Qiao, “A new method to generate the ground structure in truss topology optimization,” Engeneering Optimization, vol. 49, no. 2, Apr. 12, 2016. [Online]. Available: https://doi.org/10.1080/0305215X.2016.1169050

X. Zhang, S. Maheshwari, A. S. Ramos, and G. H. Paulino, “Driving commerce to the web—corporate intranets and the internet: Lines blumacroelement and macropatch approaches to structural topology optimization using the ground structure method,” Journal of Structural Engineering, vol. 142, no. 11, Nov. 2016. [Online]. Available: https://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0001524

G. Gao, Y. Li, H. Pan, L. Chen, and Z. Liu, “An effective members-adding method for truss topology optimization based on principal stress trajectories,” Esmerald insigth Discover Journals, Books & Case Studies, vol. 34, no. 6, Aug. 7, 2017. [Online]. Available: https://doi.org/10.1108/EC-05-2016-0166

G. I. N. Rozvany, Ed., Topology Optimization in Structural Mechanics, ser. CISM International Centre for Mechanical Sciences. Vienna, AU: Springer Vienna, 1997, pp. VII–322.

T. H. Kwok, Y. L, and Y. Chen, “A structural topology design method based on principal stress line,” Computer-Aided Design, vol. 80, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.cad.2016.07.005

S. Daynes, S. Feih, W. F. Lu, and J. Wei, “Optimisation of functionally graded lattice structures using isostatic lines,” Materials & Design, vol. 127, Aug. 5, 2017. [Online]. Available: https://doi.org/10.1016/j.matdes.2017.04.082

S. Daynes and S. Feih and W. F. Lu and J. Wei, “Design concepts for generating optimised lattice structures aligned with strain trajectories,” Computer Methods in Applied Mechanics and Engineering, vol. 354, Sep. 1, 2019. [Online]. Available: https://doi.org/10.1016/j.cma.2019.05.053

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEE Transactions on Evolutionary Computation, vol. 6, no. 2, Aug. 7, 2002. [Online]. Available: https://doi.org/10.1109/4235.996017

C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization,” IEE Transactions on Evolutionary Computation, vol. 8, no. 3, Jun. 14, 2004. [Online]. Available: https://doi.org/10.1109/TEVC.2004.826067

S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated annealing-based multiobjective optimization algorithm: Amosa,” IEE Transactions on Evolutionary Computation, vol. 12, no. 3, May. 28, 2008. [Online]. Available: https://doi.org/10.1109/TEVC.2007.900837

K. Deb. (2001) Multi-objective optimization using evolutionary algorithms, 1st ed. [Online]. Available: https://www.wiley.com/en-us/Multi+Objective+Optimization+using+Evolutionary+Algorithms-p-9780471873396

F. R. Beyer, “Principal stress trajectories in numerical solid mechanics: An algorithm for the visualisation of structural element’s stress states in two and three dimensions,” Ph.D thesis, Technische Universität Dresden, Tharandt, Germany, 2015.

E.-G. Talbi. (2009) Metaheuristics: From design to implementation, 1st ed. [Online]. Available: https://bit.ly/3GBmhOv

M. H. Sadd. (2014) Elasticity: Theory, methods and numerics, 3rd ed. [Online]. Available: https://www.elsevier.com/books/elasticity/sadd/978-0-12-408136-9

X. O. Olivella and C. A. de Saracibar. (2017) Continuum mechanics for engineers: Theory and problems, 2nd ed. [Online]. Available: http://agelet.rmee.upc.edu/books/CM-english.pdf

ANSYS Workbench (Version 2019R1), ANSYS, Canonsburg, USA, 2018.

MATLAB R2017a (Version 9.2.0), The Mathworks Inc., Natick, USA, 2017.

P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind. (2015) Geographic information science and systems, 4th ed. [Online]. Available: https://bit.ly/3N4GMFV

A. C. C. Lemonge, H. J. C. Barbosa, A. L. G. A. Coutinho, and C. C. H. Borges, “Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures,” Engineering Structures, vol. 33, no. 2, Feb. 2011. [Online]. Available: https://doi.org/10.1016/j.engstruct.2010.10.026

J. Malave. (2016) Specification for structural steel buildings. [Online]. Available: https://www.aisc.org/Specification-for-Structural-Steel-Buildings-ANSIAISC-360-16-1

A. Nasrollahi, “Optimum shape of large-span trusses according to aisc-lrfd using ranked particles optimization,” Journal of Constructional Steel Research, vol. 134, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.jcsr.2017.03.021

Publicado

2022-05-02

Cómo citar

Niño-Álvarez, L. H., & Begambre-Carrillo, O. J. (2022). Optimización topológica multiobjetivo de armaduras planas usando trayectorias de esfuerzo y algoritmos metaheurísticos. Revista Facultad De Ingeniería Universidad De Antioquia, (107), 9–25. https://doi.org/10.17533/udea.redin.20220576