Efectos sinérgicos y antagónicos en codigestión anaerobia. Análisis de la cinética de rendimiento de metano
DOI:
https://doi.org/10.17533/udea.redin.20220473Palabras clave:
Biogas, cinética, modelo matemáticoResumen
La digestión anaerobia (AD) es un proceso de descomposición de material orgánico en el que el producto principal es una mezcla gaseosa denominada biogás, la cual tiene potencial como combustible. Para mejorar el rendimiento del proceso la literatura propone varias alternativas tecnológicas, entre las cuales destaca la mezcla de sustratos, conocida como co-digestión anaerobia (ACoD). Esta alternativa se enfoca en mejorar la relación C/N y diluir componentes inhibitorios. La literatura destaca el incremento del rendimiento de metano por medio de la ACoD. En esta investigación se analizan los efectos de mezcla en la cinética de rendimiento de metano. Se emplearon artículos que reportan los coeficientes cinéticos en modelos de Cone y Gompertz modificado en mezclas binarias y ternarias. Se planteó un modelo aditivo, que empleó los coeficientes cinéticos de los monosustratos y consideró la suma de las aportaciones en cada mezcla. Posteriormente, para el análisis de los efectos de mezcla se comparan los resultados del modelo aditivo ajustados a los modelos de Cone y Gompertz modificado. La comparación realizada de los coeficientes del modelo aditivo con los experimentales consideró como relevantes variaciones del 10%. Esto permitió establecer que los efectos de mezcla pueden influir en el rendimiento de metano, así como en las constantes cinéticas del proceso.
Descargas
Citas
M. Semilof and et al., “Driving commerce to the web—corporate intranets and the internet: Lines blur,” Communications Week, vol. 6, no. 19, Jul. 15, 1996. [Online]. Available: http://www.techweb.com/se/index.html
X. Du, Y. Tao, H. Li, Y. Liu, and K. Feng, “Synergistic methane production from the anaerobic co-digestion of spirulina platensis with food waste and sewage sludge at high solid concentrations,” Renewable Energy, vol. 142, 2019. [Online]. Available: https://doi.org/10.1016/j.renene.2019.04.062
J. Kainthola, A. Kalamdhad, and V. V. Goud, “Enhanced methane production from anaerobic co-digestion of rice straw and hydrilla verticillata and its kinetic analysis,” Biomass and Bioenergy, vol. 125, 2019. [Online]. Available: https://doi.org/10.1016/j.biombioe.2019.04.011
E. Lebon, H. Caillet, E. Akinlabi, D. Madyira, and L. Adelard, “Kinetic study of anaerobic co-digestion, analysis and modelling,” Procedia Manufacturing, vol. 35, 2019. [Online]. Available: https://doi.org/10.1016/j.promfg.2019.05.047
J. H. Ebner, R. A. Labatut, J. S. Lodge, and A. A. W. an T. A. Trabold, “Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects,” Waste Management, vol. 52, 2016. [Online]. Available: https://doi.org/10.1016/j.wasman.2016.03.046
D. D. Nguyen, B. H. Jeon, J. H. Jeung, and E. R. R. J. R. B. et al., “Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis,” Bioresource Technology, vol. 280, 2019. [Online]. Available: https://doi.org/10.1016/j.biortech.2019.02.033
J. Kim, J. Kim, and C. Lee, “Anaerobic co-digestion of food waste, human feces, and toilet paper: Methane potential and synergistic effect,” Fuel, vol. 248, Jul. 15, 2019. [Online]. Available: https://doi.org/10.1016/j.fuel.2019.03.081
C. Mao, J. Xi, Y. Feng, X. Wang, and G. Rend, “Biogas production and synergistic correlations of systematic parameters during batch anaerobic digestion of corn straw,” Renewable Energy, vol. 132, 2019. [Online]. Available: https://doi.org/10.1016/j.renene.2018.09.009
F. Xu, Y. Li, X. Ge, L. Yang, and Y. Li, “Anaerobic digestion of food waste – challenges and opportunities,” Bioresource Technology, vol. 247, 2018. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.09.020
H. M. El-Mashad, “Kinetics of methane production from the codigestion of switchgrass and spirulina platensis algae,” Bioresource Technology, vol. 132, 2013. [Online]. Available: https://doi.org/10.1016/j.biortech.2012.12.183
K. Paritosh, S. Mathur, N. Pareek, and V. Vivekanand, “Feasibility study of waste (d) potential: co-digestion of organic wastes, synergistic effect and kinetics of biogas production,” International Journal of Environmental Science and Technology, vol. 15, no. 5, Jul. 27, 2017. [Online]. Available: https://link.springer.com/article/10.1007/s13762-017-1453-5
G. Zhen, X. Lu, T. Kobayashi, G. Kumar, and K. Xu, “Anaerobic co-digestion on improving methane production from mixed microalgae (scenedesmus sp., chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation,” Chemical Engineering Journal, vol. 299, 2016. [Online]. Available: https://doi.org/10.1016/j.cej.2016.04.118
D. J. Batstone and P. D. Jensen. (2011) Treatiste on water science. [Elsevier version]. [Online]. [Online]. Available: https://acortar.link/4H6Nqs
K. Wagemann and N. Tippkötter, Eds., Anaerobic Digestion, ser. Advances in Biochemical Engineering/Biotechnology. Switzerland, AG: Springer, Cham., 2017, pp. 281–299.
Y. Ren, M. Yu, C. Wu, Q. Wang, M. Gao, and et al., “A comprehensive review on food waste anaerobic digestion: Research updates and tendencies,” Bioresource Technology, vol. 247, 2018. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.09.109
K. R. Manchala, Y. Sun, D. Zhang, and Z. Wang, “Chapter two - anaerobic digestion modelling,” Advances in Bioenergy, vol. 2, 2017. [Online]. Available: https://doi.org/10.1016/bs.aibe.2017.01.001
Y. Li, Y. Jin, A. Borrion, H. Li, and J. Li, “Effects of organic composition on the anaerobic biodegradability of food waste,” Bioresource Technology, vol. 243, 2017. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.07.028
B. Xiao, Y. Qin, W. Z. J. Wu, H. Qiang, and et al., “Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance,” Bioresource Technology, vol. 249, 2018. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.10.084
M. Semilof and P. V. Rao, “Synergistic effect in anaerobic co-digestion of rice straw and dairy manure - a batch kinetic study,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 41, no. 17, Dec. 1, 2018. [Online]. Available: https://doi.org/10.1080/15567036.2018.1550536
S. Astals, D. J. Batstone, J. Mata-Alvarez, and P. D. Jensen, “Identification of synergistic impacts during anaerobic co-digestion of organic wastes,” Bioresource Technology, vol. 169, 2014. [Online]. Available: https://doi.org/10.1016/j.biortech.2014.07.024
A. Donoso-Bravo, V. Ortega, Y. Lesty, H. V. Bossche, and D. Olivares, “Addressing the synergy determination in anaerobic co-digestion and the inoculum activity impact on bmp test,” Water Science &. Technology, vol. 80, no. 2, Aug. 27, 2019. [Online]. Available: https://doi.org/10.2166/wst.2019.292
F. Andriamanohiarisoamanana, A. Saikawa, K. Tarukawa, G. Qi, and Z. P. et al., “Anaerobic co-digestion of dairy manure, meat and bone meal, and crude glycerol under mesophilic conditions: Synergistic effect and kinetic studies,” Energy for Sustainable Development, vol. 40, 2017. [Online]. Available: https://doi.org/10.1016/j.esd.2017.05.008
S. Maamri and M. Amrani, “Evaluation and modelling of methane yield efficiency from co-digestion of waste activated sludge and olive mill wastewater,” Applied Ecology and Environmental Research, vol. 17, no. 2, Mar. 6, 2019. [Online]. Available: http://aloki.hu/pdf/1702_52595274.pdf
M. Yu, Minggao, W. Lihong, Y. Y. Ren, and C. F. W. et al., “Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers’ grains and food waste by ethanol pre-fermentation,” Environmental Science and Pollution Research, vol. 25, Aug. 28, 2018. [Online]. Available: https://link.springer.com/article/10.1007/s11356-018-3027-6
C. Dennehy, P. G. Lawlor, T. Croize, Y. Jiang, L. Morrison, and et al., “Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion,” Waste Management, vol. 56, 2016. [Online]. Available: https://doi.org/10.1016/j.wasman.2016.06.032
Y. Pan, Z. Zhi, G. Zhen, X. Lu, P. Bakonyi, and et al., “Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms,” Fuel, vol. 253, 2019. [Online]. Available: https://doi.org/10.1016/j.fuel.2019.04.084
M. Kouas, M. Torrijos, P. Sousbie, J. Harmand, and S. Sayadi, “Modeling the anaerobic co-digestion of solid waste: From batch to semi-continuous simulation,” Bioresource Technology, vol. 274, 2019. [Online]. Available: https://doi.org/10.1016/j.biortech.2018.11.065
S. Xie, F. I. Hai, X. Zhan, W. Guo, H. H. Ngo, and et al., “Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization,” Bioresource Technology, vol. 222, 2016. [Online]. Available: https://doi.org/10.1016/j.biortech.2016.10.015
Y. Li, Y. Jin, H. Li, A. Borrion, Z. Yu, and et al., “Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste,” Applied Energy, vol. 213, Mar. 1, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.01.033
J. P. Díaz, I. P. Reyes, M. J. Taherzadeh, I. S. Horváth, M. Lundin, and et al., “Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays,” Chemical Engineering Journal, vol. 245, Jun. 1, 2014. [Online]. Available: https://doi.org/10.1016/j.cej.2014.02.008
R. Baquerizo-Crespo, S. Astals, O. Pérez-Ones, and I. Pereda-Reyes, “Mathematical modeling challenges associated with waste anaerobic biodegradability,” in Advances in the Domain of Environmental Biotechnology, S. Singapur, Ed., 2021, pp. 357–392.
C. Brown. (1998) Applied multivariate statistics in geohydrology and related sciences. [Online]. Available: https://acortar.link/aLYKXZ
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.