Diseño de una microrred inteligente con generación hidroeléctrica a pequeña escala: un estudio de caso práctico

Autores/as

  • Américo Vicente Teixeira Leite Instituto Politécnico de Bragança

DOI:

https://doi.org/10.17533/udea.redin.20220577

Palabras clave:

Sistemas Pico-hidráulicos, Microrredes, Inversores fotovoltaicos

Resumen

Microrredes son redes eléctricas locales que integran generación y consumo distribuidos, almacenamiento y gestión de energía y control de potencia. Pueden ser una alternativa para el suministro de energía de una casa, un edificio, un pueblo o una región más amplia. Las pequeñas centrales hidroeléctricas, hasta 5 kW, son sistemas de generación distribuida que están ganando un interés creciente. Estos llamados sistemas pico-hidráulicos se están volviendo populares ya que pueden aprovechar la integración de generadores eólicos de baja potencia e inversores fotovoltaicos (FV), que están ampliamente disponibles y a precios competitivos. Estos sistemas no solo son relevantes para la generación de energía en sistemas desconectados de la red en áreas remotas, sino también para nuevos contextos donde la red de servicios públicos está disponible. Este artículo presenta el diseño de una microrred inteligente con generación hidroeléctrica a pequeña escala. Es un estudio de caso práctico con la integración de dos turbinas pico-hidráulicas conectadas a la red: una turbina hélice de baja altura y una rueda hidráulica. La microrred fue diseñada e implementada en un pequeño museo: Casa da Seda. La generación de energía se basa en la complementariedad entre hidroeléctrica y FV. La microrred puede funcionar tanto en modo conectado a la red como en modo de isla y alimenta las cargas del museo. La conexión de ambas turbinas pico-hidráulicas a la microrred se basa en la integración de generadores eólicos e inversores FV.

|Resumen
= 741 veces | PDF (ENGLISH)
= 479 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Américo Vicente Teixeira Leite, Instituto Politécnico de Bragança

Departamento de Eletrotecnia

Citas

Global energy transformation: A roadmap to 2050, 2019 edn. International Renewable Energy Agency. Accessed: September, 2020. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf

Statistical review of world energy 2020. 69th edn. BP. Accessed: July, 2020. [Online]. Available: http://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.

Hydropower. European Commission. Accessed: July, 2020. [Online]. Available: https://ec.europa.eu/info/research-and-innovation/research-area/energy-research-and-innovation/hydropower

V. Leite, Â. Ferreira, J. Couto, and J. Batista, “Compatibility analysis of gridconnected pico-hydro systems using conventional photovoltaic inverterss,” in 18th European Conference on Power Electronics and Applications (EPE), Karl20 sruhe, Germany, 2016, pp. 1–9.

M. Basar, A. Ahmad, N. Hasim, and K. Sopian, “Introduction to the pico hydro power and the status of implementation in malaysia,” in IEEE Student Conference on Research and Development, 2011, pp. 283–288.

Tecnoturbines powering water. Tecnoturbines. Accessed: August, 2020. [Online]. Available: https://tecnoturbines.com/portfolio/comunidad-de-regantes-de-casinos-espana.

Small-scale hydro within a municipal water supply system. International Energy Agency. Accessed: August, 2020. [Online]. Available: https://sswm.info/node/4341

G. Yadav and A. K. Chauhan, “Design and development of pico micro hydro system by using house hold water supply,” in Journal of Research in Engineering and Technology, 2014, pp. 114–119.

G. Ribeiro, W. Silva, V. Leite, and Â. Ferreira, “Grid connection approach for very small-scale pico-hydro systems using pv microinverters,” in 45th Annual Conference of the IEEE Industrial Electronics Society (IECON), Lisbon, Portugal, 2019.

I. Scotta, W. Silva, and V. Leite, “Over-voltage protection circuit for grid-connected pico-hydro generation using photovoltaic inverters,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 99, pp. 73–82, Apr-Jun 2020. [Online]. Available: https://revistas.udea.edu.co/45index.php/ingenieria/article/view/340689

J. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. Comech, R. Granadino, and J. Frau, “Distributed generation: Toward a new energy paradigm,” IEEE Industrial Electronics Magazine, vol. 4, pp. 52–64, 2010.

L. Figueiredo, W. Silva, and V. Leite, “Implementation of a smart microgrid in a small museum: the silk house,” Springer Communications in Computer and Information Science book series, vol. 1152, 2020.

V. Leite, “Innovative smart microgrid integrating picohydro systems: The silk house museum,” in III Ibero- American Conference on Smart Cities, 2020, pp. 641–665.

V. Leite, J. Couto, Â. Ferreira, and J. Batista, “A practical approach for grid-connected pico-hydro systems using con60 ventional photovoltaic inverters,” in International Energy Conference (ENERGYCON), 2016, pp. 1–6.

Planning guidelines - flexible storage system with battery-backup function. SMA. Accessed: September, 2020. [Online]. Available: https://files.sma.de/downloads/65SI-SBS-Backup-PL-en-27.pdf

Flexible storage system with battery backup function – installation - quick reference guide. SMA. Accessed: September, 2020. [Online]. Available: https://files.sma.de/downloads/FSS-IS-en-43W.pdf

Sunny island 3.0m/4.4m/6.0h/8.0h and sunny remote control – operating manual. SMA. Accessed: September, 2020. [Online]. Available: https://www.europe-solarstore.com/download/sma/sunnyisland/SI30M-44M-60H-80H-BE-en-30W.pdf

Planning guidelines - smart home - the system solution for greater independence. SMA. Accessed: January, 2021. [Online]. Available: https://files.sma.de/downloads/SI-HoMan-PL-en-51.pdf

Sunny home manager 2.0 – operating manual. 80 SMA. Accessed: September, 2020. [Online]. Available: https://sol-distribution.com.au/SMA-Inverters/HM-20-BE-en-11.pdf

Low head turbine installation manual. PowerSpout. Accessed: August, 2020. [Online]. Available: https://www.85zmsa.co.za/cockpit-master/storage/uploads/2018/08/08/5b6aa67542490ZMSA_Powerspout-LH_Manual.pdf

I. Dalmarco, “Conceção, fabrico e caracterização de plataforma para testes de um modelo de roda de água horizontal para a casa da seda,” M.S. thesis, Polytechnic Insti90 tute of Bragança, Bragança, Portugal, 2019.

O. Paish, “Small hydro power: technology and current status,” Renewable and Sustainable Energy Reviews, vol. 6, pp. 537–556, 2002.

K. Sopian and J. Razak, “Pico hydro: Clean power from 95 small streams,” in 3rd WSEAS Int. Conf. on Renewable Energy Sources, 2009, pp. 414–419.

T. Pujol, A. K. Vashisht, J. Ricart, D. Culubret, and J. Velayos, “Hydraulic efficiency of horizontal waterwheels: Laboratory system of nepal for rural electrification,” in 6th International Conference on Renewable Energy Research and Applications (ICRERA), 2017, pp. 861–869.

V. Leite, T. Figueiredo, T. Pinheiro, Â. Ferreira, and J. Batista, “Dealing with the very small: First steps of a picohydro demonstration project in an university campus,” Renewable Energy & Power Quality Journal, vol. 1, no. 10, 2012.

Photovoltaic geographical information system (pvgis). European Commission. Accessed: August, 2020. [Online]. Available: https://re.jrc.ec.europa.eu/pvgtools/en/#PVP

W. Maidana, V. Leite, Â. Ferreira, L. Queijo, J. Batista, J. Bonaldo, and E. Golnçalves, “Design of a self-sustainable system based on renewable energy sources for a small museum of science dissemination - the house of silk,” in In: III Congresso Ibero-Americano de Empreendedorismo, Energia, Ambiente e Tecnologia, Bragança, Portugal, 2017, pp. 12–14.

Handbook for gel-vrla batteries. part 2: Installation, commissioning and operation. GNB. Accessed: September, 2020. [Online]. Available: http://www.sonnenschein.org/PDF%20files/GelHandbookPart2.pdf

M. Molina and M. Pacas, “Improved power conditioning system of microhydro power plant for distributed generation applications,” in International Conference on Industrial Technology (ICIT), 2010, pp. 1733–1738.

J. Hofmeister, S. Krebs, G. Schickhuber, and G. Scharfenberg, “Design and development of a pico hydro turbine system for the use in developing countries,” in 5th International Youth Conference on Energy (IYCE), 2015, pp. 1–7.

N. Koirala, R. Dhakal, D. Lubitz, D. Bhandari, G. Dev, Y. Dhakal, and U. Niraula, “Review of low head turbines

P. Kerdtuad, T. Simma, K. Chaiamarit, and S. Visawaphatradhanadhorn, “Establishment of a pico hydro power plant using permanent magnet synchronous generator supplied for ac microgrid,” in 44th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2018.

K. Vasudevan, V. Ramachandaramurthy, V. Gomathi, J. Ekanayake, and S. Tiong, “Modelling and simulation of variable speed pico hydel energy storage system for microgrid applications,” Elsevier, Journal of Energy Storage, vol. 24, pp. 1–14, 2019.

T. Anilkumar, S. Simon, and N. Padhy, “Residential electricity cost minimization model through open well - pico turbine pumped storage system,” Elsevier, Applied Energy, vol. 195, no. 23–35, 2017.

D. Powell, A. Ebrahimi, S. Nourbakhsh, M. Meshkahaldini, 10 and M. Bilton, “Design of pico-hydro turbine generator systems for self-powered electrochemical water disinfection devices,” Elsevier, Renewable Energy, vol. 123, pp. 590–602, 2018.

J. Titus and B. Ayalur, “Design and fabrication of in-line 15 turbine for pico hydro energy recovery in treated sewage water distribution line,” Elsevier, Energy Procedia, vol. 156, pp. 133–138, 2019.

B. Pali and S. Vadhera, “An innovative continuous power generation system comprising of wind energy along with 20 pumped-hydro storage and open well,” IEEE Transactions on Sustainable Energy, vol. 11, pp. 145–153, 2020.

Helmizar, “Turbine wheel - a hydropower converter for head differences between 2.5 and 5 m,” Ph.D. Thesis, School of Civil Engineering and the Environment, University of 25 Southampton, 2016.

E. Quaranta, “Investigation and optimization of the performance of gravity water wheels,” Ph.D. Thesis, Politecnico di Torino, 2017.

C. Rynne, “The technical development of the horizontal 30 water-wheel in the first millennium ad: Some recent archaeological insights from ireland,” The International Journal for the History of Engineering and Technology, vol. 85, pp. 70–93, 2015.

E. Quaranta and R. Revelli, “Output power and power losses estimation for an overshot water wheel,” Elsevier, Re1185 newable Energy, vol. 83, pp. 979–987, 2015.

E. Quaranta and R. Revelli, “Performance characteristics, power losses and mechanical power estimation for a breastshot water wheel,” Elsevier, Energy, vol. 87, pp. 315–325, 2015.

E. Quaranta, “Stream water wheels as renewable energy 1190 supply in flowing water: Theoretical considerations, performance assessment and design recommendations,” Elsevier, Energy for Sustainable Development, vol. 45, pp. 96–109, 2018.

N. Mohan, T. Undeland, and W. Robbins, Power Elec1195 tronics: Converters, Applications, and Design, 3rd ed. Tonawanda, NY: John Wiley & Sons, Inc, 2013.

N. Mohan, Electric drives: an integrative approach. Tonawanda, NY: MNPERE, 2013. data and cfd study for upgrading a western hi100 malayan watermill,” Renewable Energy, vol. 83, pp. 576– 586, 2015.

Descargas

Publicado

2022-05-12

Cómo citar

Teixeira Leite, A. V. (2022). Diseño de una microrred inteligente con generación hidroeléctrica a pequeña escala: un estudio de caso práctico. Revista Facultad De Ingeniería Universidad De Antioquia, (106), 78–93. https://doi.org/10.17533/udea.redin.20220577

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

También puede {advancedSearchLink} para este artículo.