Análisis de tendencias de la calidad del agua de la presa Cheurfas II, Algeria
DOI:
https://doi.org/10.17533/udea.redin.20211267Palabras clave:
Contaminación del agua, Tendencia de la investigación, Análisis estadísticoResumen
La parte noroeste de Argelia se caracteriza por un clima semiárido que ha creado ríos y presas semipermanentes con bajas tasas de llenado. Es importante preservar el recurso hídrico que es cada vez más escaso. Por otro lado, vale la pena señalar que las aguas superficiales movilizadas están continuamente bajo amenaza de contaminación orgánica significativa. De hecho, la presa de Cheurfas II, en el noroeste del país, es un indicativo de esta situación. Para establecer un diagnóstico del estado de la evolución temporal de la calidad del agua, se analizaron series de tiempo de 11 variables que indican la presencia de contaminación orgánica en esta presa. Los datos recopilados se analizaron mediante la prueba de Mann-Kendall para buscar tendencias significativas y la prueba de Webel-Ollech para detectar la presencia de estacionalidad. Los resultados obtenidos mostraron tendencias crecientes en residuos secos, materia orgánica, fosfatos y oxígeno disuelto. Sin embargo, variables como DBO5, DQO y NO-3 mostraron tendencias decrecientes. En cuanto a las variables NH + 4, NO-2 y pH, no presentaron tendencia. Finalmente, el volumen de agua de la presa exhibió un aumento significativo. Además, no se detectó estacionalidad en las variables estudiados, a excepción de la serie temporal PO43- y el volumen de agua. Estos hallazgos indican que la cuenca hidrográfica de la presa recibió contaminantes de diferentes orígenes, en particular contaminantes industriales. Esto dificulta la biodegradabilidad del agua.
Descargas
Citas
D. A. Chalarca-Rodríguez, R. Mejía-Ruiz, and N. J. Aguirre-Ramírez, “Aproximación a la determinación del impacto de los vertimientos de las aguas residuales domésticas del municipio de ayapel, sobre la calidad del agua de la ciénaga,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 40, Jun. 2007. [Online]. Available: https://revistas.udea.edu.co/index.php/ingenieria/article/view/20148
A. N. Sharpley and et al., “Managing agricultural phosphorus for protection of surface waters: Issues and options,” Journal of environmental quality, vol. 23, no. 3, May. 1, 1994. [Online]. Available: https://doi.org/10.2134/jeq1994.00472425002300030006x
P. J. Withers and R. H. Foy, “Contribution of Agricultural Phosphorus to Eutrophication,” in The international fertiliser society, 1995.
J. Narváez, C. López, and F. Molina, “Passive sampling in the study of dynamic and environmental impact of pesticides in water,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 68, Aug. 5, 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302013000300015
A. L. Collins and et al., “Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?” Science of The Total Environment, vol. 547, Mar. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2015.12.130
F. Bouraoui and A. Malagó, “Trend analysis of nitrate concentration in rivers in southern france,” Water, vol. 12, no. 12, Dec. 1, 2020. [Online]. Available: https://doi.org/10.3390/w12123374
L. Carneiro, A. Ostroski, and E. G. F. Mercuri, “Trophic state index for heavily impacted watersheds: modeling the influence of diffuse pollution in water bodies,” Hydrological Sciences Journal, vol. 65, no. 15, Oct. 21, 2020. [Online]. Available: https://doi.org/10.1080/02626667.2020.1828588
L. Duarte-Jaramillo, M. A. Mendoza-Atencio, B. E. Jaramillo-Colorado, and . G. González, “Water quality in the municipalities of Sincerínand Gambote, Bolívar, Colombia (2017-2018),” Revista Facultad de Ingeniería Universidad de Antioquia, no. 103, Feb. 8, 2020. [Online]. Available: https://doi.org/10.17533/udea.redin.20210217
I. Dimitrova, J. Kosturkov, and A. Vatralova, “Industrial Surface water pollution in the region of Devnya, bulgaria,” Water Science and Technology, vol. 37, no. 8, 1998. [Online]. Available: https://doi.org/10.1016/S0273-1223(98)00234-0
N. Zhao, Y. Liu, and J. Chen, “Regional industrial production’s spatial distribution and water pollution control: A plant-level aggregation method for the case of a small region in China,” Science of The Total Environment, vol. 407, no. 17, Aug. 2009. [Online]. Available:
https://doi.org/10.1016/j.scitotenv.2009.05.023
M. S. Aulakh, M. P. S. Khurana, and D. Singh, “Water Pollution Related to Agricultural, Industrial, and Urban Activities, and its Effects on the Food Chain: Case Studies from Punjab,” Journal of New Seeds, vol. 10, no. 2, May. 28, 2009. [Online]. Available: https://doi.org/10.1080/15228860902929620
H. A. Shakir, J. I. Qazi, and A. S. Chaudhry, “Examining muscles of cirrhinus mrigala for biochemical parameters as a bio-indicator of water pollution by municipal and industrial effluents into river ravi, pakistan,” International Aquatic Research, vol. 6, no. 4, Oct. 25, 2014. [Online]. Available: https://doi.org/10.1007/s40071-014-0082-6
N. Bansal, “Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India,” IOP Conference Series: Earth and Environmental Science, vol. 120, 2018. [Online]. Available: http://doi.org/10.1088/1755-1315/120/1/012001
L. Xiao, Q. Zhang, C. Niu, and H. Wang, “Spatiotemporal Patterns in River Water Quality and Pollution Source Apportionment in the Arid Beichuan River Basin of Northwestern China Using Positive Matrix Factorization Receptor Modeling Techniques,” International Journal of Environmental Research and Public Health, vol. 17, no. 14, Jul. 13, 2020. [Online]. Available: https://doi.org/10.3390/ijerph17145015
F. Bouraoui and B. Grizzetti, “Long term change of nutrient concentrations of rivers discharging in European seas,” Science of The Total Environment, vol. 409, no. 23, Nov. 1, 2011. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2011.08.015
R. Maasdam and T. H. L. Claassen, “Trends in water quality and algal growth in shallow Frisian lakes, The Netherlands,” Water Science and Technology, vol. 37, no. 3, 1998. [Online]. Available: https://doi.org/10.1016/S0273-1223(98)00068-7
R. A. Smith, R. B. Alexander, and M. Gordon, “Water-Quality Trends in the Nation’s Rivers,” Science, vol. 235, no. 4796, May. 27, 1987. [Online]. Available: https://doi.org/10.1126/science.235.4796.1607
R. M. Hirsch, S. A. Archfield, and L. A. D. Cicco, “A bootstrap method for estimating uncertainty of water quality trends,” Environmental Modelling & Software, vol. 73, Nov. 2015. [Online]. Available: https://doi.org/10.1016/j.envsoft.2015.07.017
E. Damsleth, “Modeling river acidity – a transfer function approach,” Developments in Water Science, vol. 27, 1986. [Online]. Available: https://doi.org/10.1016/S0167-5648(08)70783-4
S. Chowdhury and M. Al-Zahrani, “Water quality change in dam reservoir and shallow aquifer: analysis on trend, seasonal variability and data reduction,” Environmental Monitoring and Assessment, vol. 186, no. 10, May. 29, 2014. [Online]. Available: https://doi.org/10.1007/s10661-014-3844-0
K. W. Hipel and A. I. McLeod, Time Series Modelling of Water Resources and Environmental Systems. Ámsterdam: Elsevier, 1994.
R. M. Hirsch, J. R. Slack, and R. A. Smith, “Techniques of trend analysis for monthly water quality data,” Water Resources Research, vol. 18, no. 1, Feb. 1982. [Online]. Available: https://doi.org/10.1029/WR018i001p00107
C. A. Gonzales-Inca, A. Lepistö, and T. Huttula, “Trend detection in water-quality and load time-series from agricultural catchments of Yläneenjoki and Pyhäjoki, SW Finland,” Boreal Environment Research, vol. 21, Apr. 8, 2016. [Online]. Available: https://helda.helsinki.fi/bitstream/handle/10138/225344/ber21-1-2-166.pdf?sequence=1
H. B. Mann, “Nonparametric Tests Against Trend,” Econometrica: Journal of the econometric society, vol. 13, no. 3, Jul. 1945. [Online]. Available: https://doi.org/10.2307/1907187
L. C. Smith, “Trends in russian arctic river-ice formation and breakup, 1917 to 1994,” Physical Geography, vol. 21, no. 1, 2000. [Online]. Available: https://doi.org/10.1080/02723646.2000.10642698
A. Mondal, S. Kundu, and A. Mukhopadhyay, “Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa,” International Journal of Geology, Earth and Environmental Sciences, vol. 2, no. 1, 2012. [Online]. Available: https://bit.ly/2YW0iAu
C. Libiseller and A. Grimvall, “Performance of partial Mann–Kendall tests for trend detection in the presence of covariates,” Environmetrics: The official journal of the International Environmetrics Society, vol. 13, no. 1, Jan. 16, 2002. [Online]. Available: https://doi.org/10.1002/env.507
R. C. Bartholomay, L. C. Davis, J. C. Fisher, B. J. Tucker, and F. A. Raben, Water-Quality Characteristics and Trends for Selected Sites At and Near the Idaho National Laboratory, Idaho, 1949–2009. U.S. Geological Survey Scientific Investigations Report, 2012.
S. Tattari and et al., “Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010—can the efficiency of undertaken water protection measures seen?” Environmental Monitoring and Assessment, vol. 189, no. 3, Fer. 4, 2017. [Online]. Available: https://doi.org/10.1007/s10661-017-5791-z
L. Heydarirad, M. Mosaferi, M. Pourakbar, N. Esmailzadeh, and S. Maleki, “Groundwater salinity and quality assessment using multivariate statistical and hydrogeochemical analysis along the Urmia Lake coastal in Azarshahr plain, North West of Iran,” Environmental Earth Sciences volume, vol. 78, no. 24, Nov. 27, 2019. [Online]. Available: https://doi.org/10.1007/s12665-019-8655-8
J. M. Orellana-Macías, D. Merchán, and J. A. Causapé, “Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (spain),” Hydrogeology
Journal, vol. 28, May. 27, 2020. [Online]. Available: https://doi.org/10.1007/s10040-020-02184-0
S. J. Woodward and R. Stenger, “Extension of bayesian chemistry-assisted hydrograph separation to reveal water quality trends (bach2),” Stochastic Environmental Research and Risk Assessment, vol. 34, no. 12, Oct. 1, 2020. [Online]. Available: https://doi.org/10.1007/s00477-020-01860-7
A. Räike, A. Taskinen, and S. Knuuttila, “Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite wáter protection measures,” Ambio volume, vol. 49, no. 2, Feb. 2020. [Online]. Available: https://doi.org/10.1007/s13280-019-01217-7
R. M. Hirsch and J. R. Slack, “A Nonparametric Trend Test for Seasonal Data With Serial Dependence,” Water Resources Research, vol. 20, no. 6, Jun. 15, 1984. [Online]. Available: https://doi.org/10.1029/WR020i006p00727
T. Y. Gan, “Hydroclimatic trends and possible climatic warming in the Canadian Prairies,” Water resources research, vol. 34, no. 11, Nov. 1, 1998. [Online]. Available: https://doi.org/10.1029/98WR01265
E. M. Douglas, R. M. Vogel, and C. N. Kroll, “Trends in floods and low flows in the united states: impact of spatial correlation,” Journal of Hydrology, vol. 240, no. 1-2, Dec. 31, 2000. [Online]. Available: https://doi.org/10.1016/S0022-1694(00)00336-X
S. Yue, P. Pilon, and B. O. B. Phinney, “Canadian streamflow trend detection: impacts of serial and cross-correlation,” Hydrological Sciences Journal, vol. 48, no. 1, 2003. [Online]. Available: https://doi.org/10.1623/hysj.48.1.51.43478
S. Yue and M. Hashino, “Temperature trends in Japan: 1900–1996,” Theoretical and Applied Climatology, vol. 75, no. 1, Jun. 2003. [Online]. Available: https://doi.org/10.1007/s00704-002-0717-1
G. V. Belle and J. P. Hughes, “Nonparametric tests for trend in wáter quality,” Water resources research, vol. 20, no. 1, Jan. 1984. [Online]. Available: https://doi.org/10.1029/WR020i001p00127
D. P. Lettenmaier, “Multivariate nonparametric tests for trend in water quality1” JAWRA Journal of the American Water Resources Association, vol. 24, no. 3, Jun. 1988. [Online]. Available: https://doi.org/10.1111/j.1752-1688.1988.tb00900.x
R. R. Wilcox, Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy, 2nd ed. Tonawanda, NY: Springer, 2010.
H. Peng, S. Wang, and X. Wang, “Consistency and asymptotic distribution of the theil–sen estimator,” Journal of Statistical Planning and Inference, vol. 138, no. 6, Jul. 1, 2008. [Online]. Available: https://doi.org/10.1016/j.jspi.2007.06.036
G. Bartolini and et al., “Recent trends in Tuscany (Italy) summer temperature and indices of extremes,” International Journal of Climatology, vol. 28, no. 13, Nov. 15, 2008. [Online]. Available: https://doi.org/10.1002/joc.1673
S. Lavanya, M. Radha, and U. Arulanandu, “Statistical Distribution of Seasonal Rainfall Data for Rainfall Pattern in TNAU1 Station Coimbatore, Tamil Nadu, India,” International Journal of Current Microbiology and Applied Sciences, vol. 7, no. 4, Apr. 10, 2018. [Online]. Available: https://doi.org/10.20546/ijcmas.2018.704.346
A. A. Masoud, K. Koike, H. A. Mashaly, and F. Gergis, “Spatio-temporal trends and change factors of groundwater quality in an arid area with peat rich aquifers: Emergence of
water environmental problems in Tanta District, Egypt,” Journal of Arid Environments, vol. 124, Jan. 2016. [Online]. Available: https://doi.org/10.1016/j.jaridenv.2015.08.018
H. Chervenkov and K. Slavov, “Theil-Sen Estimator vs. Ordinary Least Squares–Trend Analysis for Selected ETCCDI Climate Indices,” Comptes rendus de l’Acad´emie bulgare des Sciences, vol. 72, no. 1, 2019. [Online]. Available: https://doi.org/10.7546/CRABS.2019.01.06
J. C. Rozemeijer, J. Klein, H. P. Broers, T. P. van Tol-Leenders, and B. V. D. Grift, “Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands,” Environmental Monitoring and Assessment, vol. 186, no. 12, Sep. 19, 2014. [Online]. Available: https://doi.org/10.1007/s10661-014-4059-0
B. Remini, “La problématique de l’eau en algérie du nord,” Larhyss Journal, no. 8, Jun. 2010. [Online]. Available: http://larhyss.net/ojs/index.php/larhyss/article/viewFile/99/93
T. Pohlert. (2017, Jul. 30,) Non-parametric trend tests and change-point detection. [Online]. Available: https://bit.ly/3qKZfPt
Seastests: seasonality tests. R package version 0.14. 2, D.Ollech, 2019.
D. C. Carslaw and K. Ropkins, “openair — an r package for air quality data analysis,” Environmental Modelling & Software, vol. 27-28, Jan-Feb. 20120. [Online]. Available: https://doi.org/10.1016/j.envsoft.2011.09.008
S. Rezak, J.-P. Laborde, and M. Errih, “Validation d’un modèle numérique de terrain adapté à la modélisation hydrologique régionale sur l’Algérie du Nord,” Hydrological Sciences Journal, vol. 57, no. 5, May. 18, 2012. [Online]. Available: https://doi.org/10.1080/02626667.2012.685742
A. de Bassin, “Cadastre hydraulique, bassin macta et bassin tafna,” Agence de bassin hydrographique, Chott Chergui, Tech. Rep., 2006.
M. Meddi, A. Talia, and C. Martin, “Évolution récente des conditions climatiques et des écoulements sur le bassin versant de la Macta (Nord-Ouest de l’Algérie),” Physio-Géo. Géographie physique et environnement, vol. 3, 2009. [Online]. Available: https://doi.org/10.4000/physio-geo.686
ANBT. (2008) Exploitation du barrge cheurfas ii rapport sur le barrage cheurfas 2 wilaya de mascara. unité régionale de gestión et exploitation des barrage et transfert, oranie chott chergui.
F. Faraoun and K. Benabdeli, “Cartographie et caractérisation physico-chimique des sols de la plaine de sidi bel abbés (algérie occidentale),” Afrique Science, vol. 6, no. 3, 2010. [Online]. Available: http://www.revue-tice.info/docannexe.php?id=2108
B. Hallouche, “Bassin versant de la haute mekerra (NW Algérien): hydrologie, géochimie et pollution,” PhD. thesis, Departement des Sciences de la Terre et de L´univers, Universite Abou Bekr Belkaid-Tlemcen, Argelia, 2017.
I. 5667-3:2003. (2003, Dec.) Qualité de l’eau — Échantillonnage — partie 3: Lignes directrices pour la conservation et la manipulation des échantillons d’eau. [Online]. Available: https://www.iso.org/fr/standard/33486.html
J. Rodier, L’analyse de l’eau. Eaux naturelles, eaux résiduaires, eau de mer, 8th ed. Paris: DUNOD, 1996.
J. Rodier, L’Analyse de l’eau - Eaux naturelles, eaux résiduaires, eau de mer, 3th ed. Paris: DUNOD, 1996.
H. Theil, A rank-invariant method of linear and polynomial regression analysis I, II, III. Nederlandse Akademie Wetenschappen, Proc, 1950.
P. K. Sen, “Estimates of the Regression Coefficient Based on Kendall’s Tau,” Journal of the American Statistical Association, vol. 62, no. 324, 1968. [Online]. Available: https://doi.org/10.1080/01621459.1968.10480934
S. Behar, J. Byrne, and C. N. Dickason, Testing the waters: chemical and physical vital signs of a river. Montpelier, VT: River Watch Network, 1996.
K. Z. Abdalla and G. Hammam, “Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in egypt to obtain the biodegradability indices,” International Journal of Sciences: Basic and Applied Research, vol. 13, no. 1, 2014. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.800.3371&rep=rep1&type=pdf
World Health Organization. Water, Sanitation and Health Team, Guidelines for drinking-water quality. Vol. 1, Recommendations, 3rd ed. World Health Organization, 2004.
S. Bedrani and F. Chehat, “L’agriculture algérienne en 2000. Une révolution tranquille: le PNDA,” Revue Prospectives agricole, INRAA, Alger, no. 1, 2001.
H. Belabbes, “Étude du phénomène d’eutrophisation dans le barrage de cheurfa ii (wilaya de mascara,” M.S. thesis, Université des sciences et de la technologie Houari Boumediène, Argelia, 2012.
F. K. Togue, G. L. O.Kuate, and L. M.Oben, “Physico-chemical characterization of the surface water of nkam river using the principal component analysis,” Journal of Materials and Environmental Sciences, vol. 8, no. 6, 2017. [Online]. Available: https://bit.ly/3kSgY3B
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.