Análisis numérico de desaturación del suelo mediante un método de inyección de aire

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20220580

Palabras clave:

Mejoramiento de suelo, licuefacción, desaturación del suelo, análisis númerico

Resumen

Se realiza un análisis numérico para evaluar el radio efectivo de avance del aire (Reff) en depósitos arenosos saturados de grano grueso mejorados mediante inyección de aire (es decir, desaturación del suelo). Es bien sabido que la resistencia cíclica a la licuefacción de un depósito arenoso saturado se ve muy afectada por la presencia de gas en espacios vacíos. Se realiza un estudio paramétrico para investigar los principales parámetros hidráulicos del suelo y las condiciones transitorias de inyección del aire que afecta a Reff y controla el proceso de desaturación. Se investigan los efectos de a) la curva característica suelo-agua, b) la permeabilidad intrínseca, c) la presión de inyección y d) la duración de la inyección de aire. Se muestra que la presión de inyección y la permeabilidad intrínseca del suelo son los principales factores que influyen en la extensión de Reff. Los casos analizados mostraron que, para una presión de inyección fija, el suelo alcanzará un valor máximo de Reff. Este valor límite se alcanza más rápidamente cuando aumenta la permeabilidad intrínseca del suelo. Los resultados tienen como objetivo reducir las lagunas de conocimiento existentes y contribuir al desarrollo de metodologías de diseño para técnicas de desaturación por inyección de aire.

|Resumen
= 536 veces | PDF (ENGLISH)
= 289 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sebastián Sepúlveda-Cano, Universidad de Antioquia

Maestría en Ingeniería

Carlos Alberto Vega-Posada, Universidad de Antioquia

Doctorado, Ingeniería Civil

Edwin Fabián García-Aristizabal, Universidad de Antioquia

Doctor en Ingeniería Civil

 

Citas

R. B. Seed, K. O. Cetin, R. E. S. Moss, A. M. Kammerer, J. Wu, and et al., “Recent advances in soil liquefaction engineering: A unified and consistent framework,” in Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring, Long Beach, CA, 2003, pp. 1–72.

J. T. Dejong, K. Soga, E. Kavazanjian, S. Burns, and L. A. Van, “Biogeochemical processes and geotechnical applications: progress, opportunities and challenges,” Géotechnique, vol. 63, no. 4, Mar. 2013. [Online]. Available: https://doi.org/10.1680/geot.SIP13.P.017

P. Gallagher, A. Pamuk, and T. Abdoun, “Stabilization of liquefiable soils using colloidal silica grout,” Journal of Materials in Civil Engineering, vol. 19, no. 1, Jan. 01, 2007. [Online]. Available: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)

M. Ishihara, M. Okamura, and T. Oshita, “Desaturating sand deposit by air injection for reducing liquefaction potential,” in 2003 Pacific Conference on Earthquake Engineering, Tsukuba, JA, 2003, pp. 1–6.

M. Okamura and Y. Soga, “Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand,” Soils and Foundations, vol. 46, no. 5, Oct. 2006. [Online]. Available: https://doi.org/10.3208/sandf.46.695

M. K. Yegian, E. Eseller-Bayat, A. Alshawabkeh, and S. Ali, “Induced-partial saturation for liquefaction mitigation: Experimental investigation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 133, no. 4, Apr. 2007. [Online]. Available: https://doi.org/10.1061(ASCE)1090-0241(2007)133:4(372)

E. E. Eseller-Bayat, M. K. Yegian, A. Alshawabkeh, and S. Gokyer, “Liquefaction response of partially saturated sands. i: Experimental results,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 139, no. 6, Jun. 2013. [Online]. Available: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815

J. He, J. Chu, V. Inavov, and L. Laloui, “Mitigation of liquefaction of saturated sand using biogas,” in Bio- and Chemo-Mechanical Processes in Geotechnical Engineering, 2015, pp. 116–124.

N. P. Marasini and M. Okamaru, “Numerical simulation of centrifuge tests to evaluate the performance of desaturation by air injection on liquefiable foundation soil of light structures,” Soils and Foundations, vol. 55, no. 6, Dec. 2015. [Online]. Available: https://doi.org/10.1016/j.sandf.2015.10.005

FlexPDE 5 User Guide, PDE Solutions Inc, 2005.

G. F. Pinder and W. G. Gray. (2008) Essentials of multiphase flow and transport in porous media. Wiley Online Library. [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470380802

H. Darcy, Determination of the laws of flow of water through sand. Physical hydrology, 1983.

M. T. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Science Society of America Journal, vol. 44, no. 5, Sep-Oct. 1980. [Online]. Available: https://doi.org/10.2136/sssaj1980.03615995004400050002x

P. Horgue, C. Soulaine, J. Franc, R. Guibert, and G. Debenest, “An open-source toolbox for multiphase flow in porous media,” Computer Physics Communications, vol. 187, Feb. 2015. [Online]. Available: https://doi.org/10.1016/j.cpc.2014.10.005

H. Yasuhara, M. Okamura, and Y. Kochi, “Experiments and predictions of soil desaturation by air-injection technique and the implications mediated by multiphase flow simulation,” Soils and Foundations, vol. 48, no. 6, Dec. 2008. [Online]. Available: https://doi.org/10.3208/sandf.48.791

B. Mao, Z. Liu, S. Liu, W. Fang, and Z. Chen, “Effects of soil property and air injection condition on airflow behavior during air sparging,” Fresenius Environmental Bullet, vol. 26, no. 6, pp. 3942––3955, Dec. 2017.

C. W. Fetter, T. Boving, and D. Kreamer, Contaminant Hydrogeology. Long Grove, IL: Waveland Press, INC, 2017.

K. R. Reddy and J. A. Adams, “System effects on benzene removal from saturated soils and ground water using air sparging,” Journal of Environmental Engineering, vol. 124, no. 3, Mar. 1998. [Online]. Available: https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(288)

R. L. Johnson, P. C. Johnson, D. B. McWhorter, R. E. Hinchee, and I. Goodman, “An overview of in situ air sparging,” Groundwater Monitoring & Remediation, vol. 13, no. 4, Nov. 1993. [Online]. Available: https://doi.org/10.1111/j.1745-6592.1993.tb00456.x/

N. R. Thomson and R. L. Johnson, “Air distribution during in situ air sparging: an overview of mathematical modeling,” J Hazard Mater., vol. 72, no. 2-3, Feb. 2000. [Online]. Available: https://doi.org/10.1016/S0304-3894(99)00143-0

P. D. Lundegard and D. LaBrecque, “Air sparging in a sandy aquifer (florence, oregon, u.s.a.): Actual and apparent radius of influence,” Journal of Contaminant Hydrology, vol. 19, no. 1, Jul. 1995. [Online]. Available: https://doi.org/10.1016/0169-7722(95)00010-S

N. Lu, “Unsaturated soil mechanics: Fundamental challenges, breakthroughs, and opportunities,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 146, no. 5, May 2020. [Online]. Available: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002233

J. C. aned J. Hopmans and M. Grismeru, “Parameter estimation of two-fluid capillary pressure–saturation and permeability functions,” Advances in Water Resources, vol. 22, no. 5, Jan. 1999. [Online]. Available: https://doi.org/10.1016/S0309-1708(98)00025-6

H. Ogata and M. Okamura, “Experimental study on air behaviour in saturated soil under air injection,” in Proc. Symp. On Natural Disaster Prevention, JSCE, Tokushima, Japan, 2006, pp. 89–90.

A. Zeybek and G. S. P. Madabhushi, “Durability of partial saturation to counteract liquefaction,” in Proceedings of the Institution of Civil Engineers-Ground Improvement, London, UK, 2017, pp. 102–111.

R. C. Chaney, “Saturation effects on the cyclic strength of sands,” in From Volume I of Earthquake Engineering and Soil Dynamics–Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, Pasadena, CA, 1978, pp. 342–358.

Y. Yoshimi, K. Tanaka, and K. Tokimatsuu, “Liquefaction resistance of a partially saturated sand,” Soils and Foundations, vol. 29, no. 3, Sep. 1989. [Online]. Available: https://doi.org/10.3208/sandf1972.29.3_157

M. Okamura, M. Takebayashi, K. Nishida, and N. Fujii, “In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 137, no. 7, Jul. 2011. [Online]. Available: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483

E. K. Nyer and S. S. Suthersan, “Air sparging: Savior of ground water remediations or just blowing bubbles in the bath tub?” Groundwater Monitoring & Remediation, vol. 13, no. 4, Nov. 1993. [Online]. Available: https://doi.org/10.1111/j.1745-6592.1993.tb00453.x

M. R. Chen, R. E. Hinkley, and J. E. Killough, “Computed tomography imaging of air sparging in porous media,” Water Resources Research, vol. 32, no. 10, Oct. 01, 1996. [Online]. Available: https://doi.org/10.1029/96WR01136

K. R. Reddy, S. Kosgi, and J. Zhou, “A review of in-situ air sparging for the remediation of voc-contaminated saturated soils and groundwater,” Hazardous Waste and Hazardous Materials, vol. 12, no. 2, Jan. 1995. [Online]. Available: https://doi.org/10.1089/hwm.1995.12.97

Descargas

Publicado

2022-05-16

Cómo citar

Sepúlveda-Cano, S., Vega-Posada, C. A., & García-Aristizabal, E. F. (2022). Análisis numérico de desaturación del suelo mediante un método de inyección de aire. Revista Facultad De Ingeniería Universidad De Antioquia, (107), 39–52. https://doi.org/10.17533/udea.redin.20220580

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

También puede {advancedSearchLink} para este artículo.