Understanding high polluted events in a tropical megacity with air quality observations and ERA5-reanalysis data

Eventos de alta contaminación en una megaciudad del trópico utilizando observaciones de calidad del aire y Reanálisis-ERA5


  • Alejandro Casallas Universidad Sergio Arboleda https://orcid.org/0000-0002-1988-5035
  • Tatiana Córdoba Universidad Sergio Arboleda
  • Leidy Sánchez-Cárdenas Universidad Sergio Arboleda
  • Marco Andrés Guevara-Luna Université de Strasbourg
  • Luis Carlos Belalcazar Universidad Nacional de Colombia




Particulate matter, atmospheric stability, Turbulent Kinetic Energy, tropical city, pollution variation


Already published studies found that 20% of the atmospheric pollution variations are linked to local meteorology. This relationship may be more important in places with dense populations such as Latin American cities since the topography and fast multiscale changes are part of the tropical climate. Even so, this possibility has not been addressed in previous studies. This research aims to characterize the relationship between tropical climate variables and PM2.5 levels during high pollution events. The relationship between wind field, Turbulent Kinetic Energy (TKE), radiation, temperature, relative humidity, boundary layer height, and atmospheric stability with PM2.5 concentration was investigated. Statistical correlations and the parcel method were used to analyze the relationship between vertical motions and PM2.5. Obtained results show that the stability, vertical velocity, and boundary layer height do not significantly affect pollution levels. We identified some signals that are strongly related to PM2.5 high concentrations: weaker than average horizontal wind speed and TKE throughout the day, easterly winds in the morning (associated with the transport of ashes from wildfires produced on the Eastern plains), combined with a higher than average radiation peak. These results lead to a better understanding of the PM2.5 variations, which can be applied for the improvement of air quality models and have the potential to be part of a novel policy to manage air quality risk.

= 36 veces | PDF
= 18 veces|


Download data is not yet available.


Metrics Loading ...

Author Biographies

Alejandro Casallas, Universidad Sergio Arboleda

PhD(e), a School of Exact Sciences and Engineering (ECEI) 

Tatiana Córdoba, Universidad Sergio Arboleda

Environmental engineering, a School of Exact Sciences and Engineering (ECEI)

Leidy Sánchez-Cárdenas, Universidad Sergio Arboleda

Environmental engineering, School of Exact Sciences and Engineering (ECEI)

Marco Andrés Guevara-Luna, Université de Strasbourg

PhD(e), d Laboratoire Image Ville Environnement (LIVE)

Luis Carlos Belalcazar, Universidad Nacional de Colombia

PhD, Chemical and Environmental Engineering Department professor


N. I. Molina-Gómez, D. S. Calderón-Rivera, R. Sierra-Parada, J. L. Díaz-Arévalo, and P. A. López-Jiménez, “Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá,” International Journal of Biometeorology, vol. 65, Jan. 2021. [Online]. Available: https://doi.org/10.1007/s00484-020-01955-4

G. Gualtieri, P. Toscano, A. Crisci, S. D. Lonardo, M. Tartaglia, and et al., “Influence of road traffic, residential heating and meteorological conditions on pm10 concentrations during air pollution critical episodes,” Environmental Science and Pollution Research, vol. 22, 2015. [Online]. Available: https://doi.org/10.1007/s11356-015-5099-x

Y. Zu, L. Huang, J. Hu, Z. Zhao, H. Liu, and et al., “Investigation of relationships between meteorological conditions and high pm10 pollution in a megacity in the western yangtze river delta, china,” Air Quality, Atmosphere & Health, vol. 10, 2017. [Online]. Available: https://doi.org/10.1007/s11869-017-0472-1

Y. Miao, S. Liu, J. Guo, Y. Yan, S. Huang, and et al., “Impacts of meteorological conditions on wintertime pm2.5 pollution in taiyuan, north china,” Environmental Science and Pollution Research, vol. 25, 2018. [Online]. Available: https://doi.org/10.1007/s11356-018-2327-1

A. Hayas-Barrú, “Meteorología y contaminación atmosférica. peculiaridades de la zona urbana de jaéna,” Boletín Del Instituto de Estudios Giennenses, vol. 143, 1991. [Online]. Available: https://dialnet.unirioja.es/descarga/articulo/1202715.pdf

C. Du, S. Liu, X. Yu, X. Li, C. Chen, and et al., “Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in xi’an, central china,” Aerosol and Air Quality Research, vol. 13, 2013. [Online]. Available: https://doi.org/10.4209/aaqr.2012.10.0274

J. Zhong1, X. Zhang, Y. Dong, Y. Wang1, C. Liu, and et al., “Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of pm2.5 during winter heavy pollution episodes in beijing from 2013 to 2016,” Atmos. Chem. Phys., vol. 18, 2018. [Online]. Available: https://doi.org/10.5194/acp-18-247-2018

Z. Chen, D. Chen, C. Zhao, M. Kwan, J. Cai, and et al., “Influence of meteorological conditions on pm2.5 concentrations across china: A review of methodology and mechanism,” Environment International, vol. 139, Jun. 2020. [Online]. Available: https://doi.org/10.1016/j.envint.2020.105558

P. A. Lobo-Rojas, “Modelamiento de dispersión del material particulado pm-10 mediante breeze, en la zona aledaña a la planta productora de cemento cemex s.a. ubicada-bucaramanga,” B. C. thesis, Esc. de Ing. Ambiental, Universidad Pontificia Bolivariana, Bucaramanga, Santander, 2010.

A. Silva and D. Arcos, “Aplicación del programa aermod para modelar dispersión de pm10 emitido por equipos de calefacción a leña en la ciudad de constitución,” Obras y proyectos, vol. 9, 2011. [Online]. Available: http://dx.doi.org/10.4067/S0718-28132011000100001

A. Casallas, N. Celis, C. Ferro, E. López-Barrera, C. Peña, and et al., “Validation of pm10 and pm2.5 early alert in Bogotá, Colombia, through the modeling software wrf-chem,” Environ. Sci. Pollut. Res, vol. 27, 2020. [Online]. Available: https://doi.org/10.1007/s11356-019-06997-9

C. Mogollón-Sotelo, A. Casallas, S. Vidal, N. Celis, C. Ferro, and et al., “A support vector machine model to forecast ground-level pm2.5 in a highly populated city with a complex terrain,” Air. Qual. Atmos. Health, vol. 14, 2021. [Online]. Available: https://doi.org/10.1007/s11869-020-00945-0

A. Restrepo-Martínez, “Método para la descripción de material particulado empleando microscopía asistida por computador,” M.S. thesis, Ing. Sistemas, Universidad Nacional, Medellín, Colombia, 2004.

J. Pey-Betrán, “Caracterización físico-química de los aerosoles atmosféricos en el mediterraneo occidental,” Ph. D thesis, Dep. d’Enginyeria Minera, Universitat Politecnica de Catalunya, Barcelona, España, 2007.

M. de M. Viana-Rodríguez, “Niveles, composición y origen del material particulado atmosférico en los sectores norte y este de la península ibérica y canarias,” Ph. D thesis, Dep. Geología, Universitat de Barcelona, Islas Canarias, España, 2003.

Z. Ma, J. Xu, W. Quan, Z. Zhang, W. Lin, and et al., “Significant increase of surface ozone at a rural site, north of eastern china,” Atmos. Chem. Phys., vol. 16, 2016. [Online]. Available: https://doi.org/10.5194/acp-16-3969-2016

J. Chen, Z. Li, M. Lv, Y. Wang, W. Wang, and et al., “Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern china,” Atmos. Chem. Phys., vol. 19, 2019. [Online]. Available: https://doi.org/10.5194/acp-19-1327-2019

G. Sehmel and W. Hodgson, “A model for predicting dry deposition of particles and gases to environmental surfaces,” Battelle Pacific Northwest Labs.„ Richland, WA, Tech. Rep. PNL-SA-6721, 1978.

M. S. El-Shobokshy, “The dependence of airborne particulate deposition on atmospheric stability and surface conditions,” Atmospheric Environment (1967), vol. 19, no. 7, 1987. [Online]. Available: https://doi.org/10.1016/0004-6981(85)90203-3

G. Lin, J. Fu, D. Jiang, J. Wang, Q. Wang, and et al., “Spatial variation of the relationship between pm2.5 concentrations and meteorological parameters in China,” BioMed Research International, 2015. [Online]. Available: https://doi.org/10.1155/2015/684618

Q. Yang, Q. Yuan, T. Li, H. Shen, and L. Zhang, “The relationships between pm2.5 and meteorological factors in china: Seasonal and regional variations,” Int. J. Environ. Res. Public Health, vol. 14, no. 12, 2017. [Online]. Available: https://doi.org/10.3390/ijerph14121510

J. Seo, D.-S. R. Park, J. Y. Kim, D. Youn, Y. B. Lim, and et al., “Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in seoul, south korea,” Atmos. Chem. Phys., vol. 18, 2018. [Online]. Available: https://doi.org/10.5194/acp-18-16121-2018

Z. Yin, H. Wang, and H. Chen, “Understanding severe winter haze events in the north china plain in 2014: roles of climate anomalies,” Adv. Atmos. Sci., vol. 17, Feb. 02, 2017. [Online]. Available: https://doi.org/10.5194/acp-17-1641-2017

J. Li, H. Chen, Z. Li, C. P. Wang, M. Cribb, X. Fan, and et al., “Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations,” Adv. Atmos. Sci., vol. 32, no. 7, Jul. 2015. [Online]. Available: https://doi.org/10.1007/s00376-014-4150-z

D. Chen, X. Xie, Y.Zhou1, J. Lang, T. Xuand, and et al., “Performance evaluation of the wrf-chem model with different physical parameterization schemes during an extremely high pm2.5 pollution episode in beijing,” Aerosol Air Qual. Res., vol. 17, 2017. [Online]. Available: https://doi.org/10.4209/aaqr.2015.10.0610

T. Liao, S. Wang, J. Ai, K. Gui, B. Duan, and et al., “Heavy pollution episodes, transport pathways and potential sources of pm2.5 during the winter of 2013 in chengdu (china),” Science of The Total Environment, vol. 584-585, 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2017.01.160

Y. Yuanqin, W. Jizhi, H. Qing, and W. Yaqiang, “A plam index forecast method for air quality of beijing in summer,” J. Appl. Meteor. Sci., vol. 20, no. 6, 2009. [Online]. Available:

X. Y. Zhang, Y. Q. Wang, W. L. Lin, Y. M. Zhang, X. C. Zhang, and et al., “Changes of atmospheric composition and optical properties over beijing—2008 olympic monitoring campaign,” Bulletin of the American Meteorological Society, vol. 90, no. 11, 2009. [Online]. Available: https://doi.org/10.1175/2009BAMS2804.1

D. E. Horton, C. B. Skinner, D. Singh, and N. S. Diffenbaugh, “Occurrence and persistence of future atmospheric stagnation events,” Bulletin of the American Meteorological Society, vol. 4, 2014. [Online]. Available: https://doi.org/10.1038/nclimate2272

X. Yang, C. Zhao, J. Guo, and Y. Wang, “Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in beijing,” JGR Atmospheres, vol. 121, no. 8, Apr. 09, 2016. [Online]. Available: https://doi.org/10.1002/2015JD024645

X. Wang, R. E. Dickinson, L. Su, C. Zhou, and K. Wang, “Pm2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions,” Bulletin of the American Meteorological Society, vol. 99, no. 1, Jun. 01, 2018. [Online]. Available: https://doi.org/10.1175/BAMS-D-16-0301.1

G. Ning, S. Wang, M. Ma, C. Ni, Z. Shang, and et al., “Characteristics of air pollution in different zones of sichuan Basin, China,” Science of The Total Environment, vol. 612, Jun. 2018. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2017.08.205

G. de J. Montoya, G. W. Cepeda, and J. A. Eslava, “Características de la turbulencia y de la estabilidad atmosférica en Bogotá,” Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, vol. 28, no. 108, Sep. 2004. [Online]. Available: t.ly/dj5P1

J. F. Mendez-Espinosa, L. C. Belalcazar, and R. M. Betancourt, “Regional air quality impact of northern South America biomass burning emissions,” Atmospheric Environment, vol. 203, Apr. 2019. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2019.01.042

G. Tang, J. Zhang, C. Münke, T. Song, B. Hu, and et al., “Mixing layer height and the implications for air pollution over Beijing, China,” Atmos. Chem. Phys. Discuss., vol. 15, Oct. 2015. [Online]. Available: https://doi.org/10.5194/acpd-15-28249-2015

Características generales de las estaciones de la red de monitoreo de calidad del aire de Bogotá. Secretaría Distrital de Ambiente. [Online]. Available: https://www.ambientebogota.gov.co/estaciones-rmcab

A. Casallas, D. Hernández-Deckers, and H. Mora-Páez, “Understanding convective storms in a tropical, high-altitude location with in-situ meteorological observations and gps-derived water vapor,” Atmósfera, 2021. [Online]. Available: https://doi.org/10.20937/ATM.53051

H. Hersbach, B. Bell, P. Berrisford, P. Biavati, G. Horányi, and et al. (2018) Era5 hourly data on pressure levels from 1979 to present. copernicus climate change service (c3s) climate data store (cds). [Online]. Available: https://doi.org/10.24381/cds.bd0915c6

K. Narasimhan-Uma, S. Shankar-Das, M. Venkat-Ratnam, and K. Viswanathan-Suneeth, “Assessment of vertical air motion among reanalyses and qualitative comparison with direct vhf radar measurements over the two tropical stations,” Atmos. Chem. Phys. Discuss., 2020. [Online]. Available: https://doi.org/10.5194/ acp-2020-18

A. V. Engeln and J. Teixeira, “A planetary boundary layer height climatology derived from ecmwf reanalysis data,” Journal of Climate, no. 17, 2013. [Online]. Available: https://doi.org/10.1175/JCLI-D-12-00385.1

Air quality Index: a guide to air quality and your health, US Environmental Protection Agency, Washington, DC, 2003. [Online]. Available: https://www.airnow.gov/aqi/

M. Sierra, “Asociación existente entre las variables meteorológicas temperatura, velocidad del viento y precipitación y las concentraciones de pm10 registradas en la red de calidad del aire de Bogotá,” M.S. thesis, Universidad de la Salle, Bogotá, Colombia, 2006.

S. Ramos–Herrera, R. Bautista–Margulis, and A. Valdez–Manzanilla, “Estudio estadístico de la correlación entre contaminantes atmosféricos y variables meteorológicas en la zona norte de Chiapas, México,” Universidad y Ciencia, no. 1, 2010. [Online]. Available: http://www.scielo.org.mx/scielo.php?pid= S0186-29792010000100005&script=sci_arttext

J. R. Holton, “An introduction to dynamic meteorology,” Universidad y Ciencia, no. 5, 2005. [Online]. Available: https://doi.org/10.1119/1.1987371

S. Lee, C. H. Ho, and Y. S. Choi, “High-pm10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions,” Atmospheric Environment, no. 39, 2011. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2011.08.071

D. Armenteras, M. Romero, and G. Galindo, “Vegetation fire in the savannas of the Llanos Orientales of Colombia,” World Resource Review, no. 4, 2005. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

D. Armenteras, F. González-Alonso, and C. Franco-Aguilera, “Geographic and temporal distribution of fire in Colombia using thermal anomalies data,” Caldasia, no. 2, 2009. [Online]. Available:http://www.scielo.org.co/scielo.php?pid=S0366-52322009000200007&script=sci_abstract&tlng=en

J. F. Jiménez-Mejía, “Altura de la capa de mezcla en un área urbana, montañosa y tropical. caso de estudio: Valle de Aburrá (Colombia),” Ph.D thesis, Universidad de Antioquia, Medellín, Colombia, 2016.

M. A. Guevara-Luna, A. Casallas, L. C. Belalcázar-Cerón, and A. Clappier, “Implementation and evaluation of wrf simulation over a city with complex terrain using alos-palsar 0.4 s topography,” Caldasia, 2020. [Online]. Available: https://doi.org/10.1007/s11356-020-09824-8

A. Casallas, M. P. Castillo-Camacho, E. R. Sánchez, Y. González, N. Celis, and et al., “Surface, satellite ozone changes in northern south america during low anthropogenic emission conditions: A machine learning approach,” SSRN, Feb. 16, 2022. [Online]. Available: http://dx.doi.org/10.2139/ssrn.4016140

N. Celis, A. Casallas, E. A. López-Barrera, H. Martínez, C. A. Peña-Rincón, and et al., “Design of an early alert system for pm2.5 through a stochastic method and machine learning models,” Environmental Science & Policy, vol. 127, Jan. 2022. [Online]. Available: https://doi.org/10.1016/j.envsci.2021.10.030

A. Casallas, C. Ferro, N. Celis, M. A. Guevara-Luna, C. Mogollón-Sotelo, and et al., “Long short-term memory artificial neural network approach to forecast meteorology and pm2.5 local variables in Bogotá, Colombia,” Model. Earth Syst. Environ., 2021. [Online]. Available: https://doi.org/10.1007/s40808-021-01274-6

R. S. Sokhi, V. Singh, X. Querol, S. Finardi, A. Créso-Targino, and et al., “A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions,” Environment International, vol. 157, Dec. 2021. [Online]. Available: https://doi.org/10.1016/j.envint.2021.106818




How to Cite

Casallas, A., Córdoba, T., Sánchez-Cárdenas, L., Guevara-Luna, M. A., & Belalcazar, L. C. (2022). Understanding high polluted events in a tropical megacity with air quality observations and ERA5-reanalysis data: Eventos de alta contaminación en una megaciudad del trópico utilizando observaciones de calidad del aire y Reanálisis-ERA5. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20220682



Research paper

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.