Determinación de tipologías de accidentes de tránsito mediante el análisis de correspondencia múltiple (ACM) en un entorno de bajos recursos
DOI:
https://doi.org/10.17533/udea.redin.20220786Palabras clave:
Accidente de tráfico, prevalencia, análisis de correspondencia múltiple, accidente de tráfico en carretera, TipologíaResumen
El objetivo del estudio fue investigar los accidentes de tránsito (AT) autoreportados en una muestra de conductores de Loja Ecuador es ilustrar la aplicabilidad del análisis de correspondencia múltiple (ACM) en la detección y representación de las tipologías de individuos que han experimentado un AT, así como la tipología de dichos eventos, a traves de la realización de una encuesta online en el 2021. Se investigaron 754 conductores, estimándose una prevalencia de vida de AT del 41.5% (IC 95%: 36.9-46.2). La tipología de conductores que indicaron haber participado en un AT se caracteriza por un predominio de personas de 25 a 40 años de edad, que conducen principalmente coches y que experimentan con frecuencia distracción y uso de teléfonos móvil mientras conducen. Adicionalmente, el ACM indicó dos tipologías distintivas de AT. Una se caracteriza por colisión vehículo-vehículo, causada por factores de comportamiento, y que se produce en carreteras con límites de velocidad bajos durante la tarde. La segunda se caracteriza por la colisión vehículo-entorno, que se produce en carreteras de límite de velocidad intermedios durante la noche. En general se observó que los principales determinantes de AT son factores de comportamiento modificables y que el ACM es una herramienta exploratoria válida para identificar las tipologías individuales y de eventos de las personas con mayor riesgo de sufrir un AT, así como una técnica factible de ser implementada en países de bajos ingresos como Ecuador.
Descargas
Citas
Global status report on road safety, On road safety, Wordl Health Organization, Geneva,SH, 2018.
A. Espinosa, G. Cabrera, and N. Velásquez, “Epidemiología de incidentes viales medellín-colombia, 2010-2015,” Revista Facultad Nacional de Salud Pública, vol. 35, no. 1, Nov. 25, 2017. [Online]. Available: https://doi.org/10.17533/udea.rfnsp.v35n1a02
H. Huang, Q. Yin, D. C. Schwebel, P. Ning, and G. Hu, “Availability and consistency of health and non-health data for road traffic fatality: Analysis of data from 195 countries, 1985–2013,” Accident Analysis /Prevention, vol. 108, 2017. [Online]. Available: https://doi.org/10.1016/j.aap.2017.08.033
S. Martínez, R. Sánchez, and P. Yañéz-Pagans, “Road safety: challenges and opportunities in latin america and the caribbean,” Latin American Economic Review, vol. 28, no. 17, Nov. 18, 2019. [Online]. Available: https://link.springer.com/article/10.1186/s40503-019-0078-0
A. Ahmed, A. F. M. Sadullah, and A. S. Yahya, “Errors in accident data, its types, causes and methods of rectification-analysis of the literature,” Accid Anal Prev, vol. 130, 2019. [Online]. Available: https://doi.org/10.1016/j.aap.2017.07.018
F. R. Chang, H. L. Huang, D. C. Schwebel, A. H. S. Chan, and G. Q. Hu, “Global road traffic injury statistics: Challenges, mechanisms and solutions,” Chinese Journal of Traumatology, vol. 23, 2020. [Online]. Available: https://doi.org/10.1016/j.cjtee.2020.06.001
Benchmarking Road Safety in Latin America, International Transport Forum, Los Angeles, CA, 2017.
F. L. Mannering and C. R. Bhat, “Analytic methods in accident research: Methodological frontier and future directions,” Analytic Methods in Accident Research, vol. 1, 2014. [Online]. Available: https://doi.org/10.1016/j.amar.2013.09.001
E. Hauer, The Art of Regression Modeling in Road Safety. Springer, 2015.
A. Mehdizadeh, M. Cai, Q. Hu, M. A. A. Yazdi, N. Mohabbati-Kalejahi, and et al., “A review of data analytic applications in road traffic safety. part 1: Descriptive and predictive modeling,” Sensors, vol. 20, no. 4, Jan. 5, 2020. [Online]. Available: https://doi.org/10.3390/s20041107
A. Mehdizadeh, M. Cai, Q. Hu, M. A. A. Yazdi, N. Mohabbati-Kalejahi, and et al., “A review of data analytic applications in road traffic safety.part 1: Descriptive and predictive modeling,” Sensors, vol. 20, no. 4, Jan. 5, 2020. [Online]. Available: https://doi.org/10.3390/s20041107
M. Mohanty and A. Gupta, “Factors affecting road crash modeling,” Journal of transport literature, vol. 9, no. 2, 2015. [Online]. Available: https://doi.org/10.1590/2238-1031.jtl.v9n2a3
A. P. Taddia, A. M. P. Ayala, E. Café, M. Rodríguez, M. Viegas, and et al., “Fortaleciendo el sector académico para reducir los siniestros de tránsito en américa latina: Investigaciones y casos de estudio en seguridad vial,” Banco Inter-Americano de Desarrollo, Tech. Rep., May. 2014.
J. P. Jaramillo and O. Arbeláez, “Modelling road traffic collisions using clustered zones based on foursquare data in medellín,” Case Studies on Transport Policy, vol. 9, no. 2, 2021. [Online]. Available: https://doi.org/10.1016/j.cstp.2021.04.016
M. Jalayer and H. Zhou, “A multiple correspondence analysis of at-fault motorcycle-involved crashes in alabama,” Journal of Advanced Transportation, vol. 50, no. 8, Feb. 08, 2017. [Online]. Available: https://doi.org/10.1002/atr.1447
P. Natarajan, S. K. Sivasakaran, and V. Balasubramanian, “Identification of contributing factors in vehicle pedestrian crashes in chennai using multiple correspondence analysis,” Transportation Research Procedia, vol. 48, 2020. [Online]. Available: https://doi.org/10.1016/j.trpro.2020.08.104
J. Hjellbrekke. (2018) Multiple correspondence analysis for the social sciences. [Online]. Available: https://cutt.ly/fG3n684
G. Richards and L. A. van der Ark, “Dimensions of cultural consumption among tourists: Multiple correspondence analysis,” Tourism Management, vol. 37, Aug. 2013. [Online]. Available: https://doi.org/10.1016/j.tourman.2013.01.007
M. Dungey, F. D. Tchatokab, and M. B.Yanotti, “Using multiple correspondence analysis for finance: A tool for assessing financial inclusion,” International Review of Financial Analysis, vol. 59, Oct. 2018. [Online]. Available: https://doi.org/10.1016/j.irfa.2018.08.007
D. Ayele, T. Zewotir, and H. Mwambi, “Multiple correspondence analysis as a tool for analysis of large health surveys in african settings,” African Health Sciences, vol. 14, no. 4, 2014. [Online]. Available: https://doi.org/10.4314/ahs.v14i4.35
M. Greenacre, Correspondence Analysis in Practice, 3rd ed. New York, USA: Chapman and Hall/CRC, 2016.
(2014, Dec.) Proyecciones poblacionales ecuador 2010 - 2020. Instituto Nacional de estadísticas y Censos (INEC) de Ecuador. [Online]. Available: https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/
W. E. J. Sangurima. (2016) Movilidad urbana en la ciudad de loja. Imprenta master offset. [Online]. Available: https://issuu.com/wilsoneduardojaramillosangurima/docs/movilidad_loja
J. Maldonado, Report of issued driver licenses from city of Loja bewteen 2016-2020, 1st ed. LOJA, EC.: C. Domínguez, 2016-2020.
M. J. Salganik, “Variance estimation, design effects, and sample size calculations for respondent-driven sampling,” Journal of Urban Health volume, vol. 83, no. 1, Aug. 26, 2006. [Online]. Available: https://link.springer.com/article/10.1007/s11524-006-9106-x
a database and statistics program for public health professionals. Division of Health Informatics Surveillance (DHIS), Center for Surveillance, Epidemiology Laboratory Services (CSELS). Centers for Disease Control and Prevention. U.S. Department of Health Human Services. [Online]. Available: https://www.cdc.gov/epiinfo/
A. F. Magalhães, C. M. Lopes, R. J. Koifman, and P. T. Muniz, “Prevalência de acidentes de trânsito auto-referidos em rio branco, acre,” Revista de Saúde Pública, vol. 45, no. 4, Aug. 2011. [Online]. Available: https://doi.org/10.1590/S0034-89102011005000031
M. Semilof and et al., “A. m. adejugbagbe and a. a. fatiregun and a. rukewe and t. alonge,” African Health Sciences, vol. 15, no. 2, 2015. [Online]. Available: https://doi.org/10.4314/ahs.v15i2.22
Epidemiologic Statistics for Public Health, OpenEpi, Hills,GA, 2022.
C. Parker, S. Scott, and A. Geddes. (2019) Snowball sampling. SAGE research methods foundations. [Online]. Available: https://eprints.glos.ac.uk/id/eprint/6781
R. W. Emerson, “Convenience sampling, random sampling, and snowball sampling: How does sampling affect the validity of research?” Journal of Visual Impairment Blindness, vol. 109, no. 2, Mar. 1, 2015. [Online]. Available: https://doi.org/10.1177/0145482X1510900215
M. Semilof and et al., “F. baltar and i. brunet,” Internet Research, vol. 22, no. 1, 2012. [Online]. Available: https://doi.org/10.1108/10662241211199960
G. A. Dusek, Y. V. Yurova, and C. P. Ruppel, “Using social media and targeted snowball sampling to survey a hard-to-reach population: A case study,” International Journal of Doctoral Studies, vol. 10, no. 1, 2015. [Online]. Available: http://www.informingscience.com/ijds/Volume10/IJDSv10p279-299Dusek0717.pdf
T. Dosek, “Snowball sampling and facebook: How social media can help access hard-to-reach populations,” PS: Political Science Politics, vol. 54, no. 4, May. 18, 2021. [Online]. Available: https://doi.org/10.1017/S104909652100041X
Encuesta de percepción de riesgo vial en la ciudad de Bogotá 2019, Alcaldía Mayor de Bogotá, Bogotá, CO, 2019.
U. Meesmann, K. Torfs, H. Nguyen, W. V. den Berghe, and W. V. den Berghe, “¿ nos preocupa la seguridad vial? principales resultados del proyecto esra1 en 38 paises,” ESRA (E-Survey of Road users’ Attitudes) Vias institute, Bruselas, Bélgica, Tech. Rep., 2018.
I. Trans, “Glossary for transport statistics,” European Union (EU) Statistical Office (EUROSTAT) and United Nation Economic Commission for Europe (UNECE) and the International Transport Forum (ITF) at the OECD, Tech. Rep., 2019.
J. Quail, M. Osman, and G. Teare, “Multiple correspondence analysis is a useful tool to visualize complex categorical correlated data,” International Journal of Population Data Science, vol. 1, no. 1, 2017. [Online]. Available: https://doi.org/10.23889/ijpds.v1i1.118
E. J. Beh and R. Lombardo. (2021) An introduction to correspondence analysis. John Wiley Sons. [Online]. Available: https://bit.ly/3FoUVKW
N. Sourial, C. Wolfson, B. Zhu, J. Quail, J. Fletcher, and et al., “Correspondence analysis is a useful tool to uncover the relationships among categorical variables,” Journal of Clinical Epidemiology, vol. 63, no. 6, Jun. 2010. [Online]. Available: https://doi.org/10.1016/j.jclinepi.2009.08.008
F. C. Pampel, Logistic regression: A primer, 1st ed. Sage publications, 2020.
J. W. Osborne. (2014) Best practices in logistic regression. Sage Publications. [Online]. Available: https://bit.ly/3kRkv1W
T. Yamamoto, J. Hashiji, and V. N. Shankar, “Underreporting in traffic accident data, bias in parameters and the structure of injury severity models,” Accident Analysis Prevention, vol. 40, no. 4, Jul. 2008. [Online]. Available: https://doi.org/10.1016/j.aap.2007.10.016
C. Whitaker, S. Stevelink, and N. Fear, “The use of facebook in recruiting participants for health research purposes: A systematic review,” Journal of medical Internet research, vol. 19, no. 8, Aug. 28, 2017. [Online]. Available: https://doi.org/10.2196/jmir.7071
L. Thornton, P. J. Batterham, D. B. Fassnacht, F. Kay-Lambkin, A. L. Calear, and et al., “Recruiting for health, medical or psychosocial research using facebook: systematic review,” Internet Interventions, vol. 4, May., 2016. [Online]. Available: https://doi.org/10.1016/j.invent.2016.02.001
J. F. Ebert, L. Huibers, B. Christensen, and M. B. Christensen, “Paper- or web-based questionnaire invitations as a method for data collection: Cross-sectional comparative study of differences in response rate, completeness of data, and financial cost,” Journal of medical Internet research, vol. 20, no. 1, Jan. 23, 2018. [Online]. Available: https://doi.org/10.2196/jmir.8353
M. Das, P. Ester, and L. Kaczmirek. (2018) Social and behavioral research and the internet: Advances in applied methods and research strategies. Routledge. [Online]. Available: https://bit.ly/3FqLpXD
C. Whitaker, S. Stevelink, and N. Fear, “The use of facebook in recruiting participants for health research purposes: A systematic review,” Journal of Medical Internet Research, vol. 19, no. 8, Aug. 28, 2017. [Online]. Available: https://doi.org/10.2196/jmir.7071
H. Forgasz, H. Tan, G. Leder, and A. McLeod, “Enhancing survey participation: Facebook advertisements for recruitment in educational research,” International Journal of Research Method in Education, vol. 42, no. 3, Feb. 22, 2017. [Online]. Available: https://doi.org/10.1080/1743727X.2017.1295939
S. Lee, M. Torok, F. Shand, N. Chen, L. McGillivray, and et al., “Performance, cost-effectiveness, and representativeness of facebook recruitment to suicide prevention research: Online survey study,” JMIR mental health, vol. 7, no. 10, Oct. 22, 2020. [Online]. Available: https://doi.org/10.2196/18762
E. R. Pedersen and J. Kurz, “Using facebook for health-related research study recruitment and program delivery,” Current Opinion in Psychology, vol. 9, Jun. 2016. [Online]. Available: https://doi.org/10.1016/j.copsyc.2015.09.011
L. M. Adam, D. P. Manca, and R. C. Bell, “Can facebook be used for research? experiences using facebook to recruit pregnant women for a randomized controlled trial,” Journal of Medical Internet Research, vol. 18, no. 9, Sep. 21, 2016. [Online]. Available: https://doi.org/10.2196/jmir.6404
T. Christensen, A. H. Riis, E. E. Escotilla, L. un sabio, M. G. Nielsen, and et al., “Costs and efficiency of online and offline recruitment methods: A web-based cohort study,” Journal of Medical Internet Research, vol. 19, no. 3, Mar. 1, 2017. [Online]. Available: https://doi.org/10.2196/jmir.6716
L. Iannelli, F. Giglietto, L. Rossi, and E. Zurovac, “Facebook digital traces for survey research: Assessing the efficiency and effectiveness of a facebook ad–based procedure for recruiting online survey respondents in niche and difficult-to-reach populations,” Social Science Computer Review, vol. 38, no. 4, Dec. 11, 2018. [Online]. Available: https://doi.org/10.1177/0894439318816638
E. J. Nelson, T. Loux, L. D. Arnold, S. T. Siddiqui, and M. Schootman, “Obtaining contextually relevant geographic data using facebook recruitment in public health studies,” Health Place, vol. 55, Jan. 2019. [Online]. Available: https://doi.org/10.1016/j.healthplace.2018.11.002
R. Pérez-Núñez, M. Híjar, A. Celis, , and E. Hidalgo-Solórzano, “El estado de las lesiones causadas por el tránsito en méxico: evidencias para fortalecer la estrategia mexicana de seguridad vial,” Cadernos de Saúde Pública, vol. 30, 2014. [Online]. Available: https://doi.org/10.1590/0102-311X00026113
M. Touahmia, “Identification of risk factors influencing road traffic accidents,” Engineering, Technology and Applied Science Research, vol. 8, no. 1, 2018. [Online]. Available: https://bit.ly/3LXX6Ye
K. D. Konlan, A. R. Doat, I. Mohammed, R. M. Amoad, J. A. Saah, and et al., “Prevalence and pattern of road traffic accidents among commercial motorcyclists in the central tongu district, ghana,” The Scientific World Journal, vol. 2020, Jun. 1, 2020. [Online]. Available: https://doi.org/10.1155/2020/9493718
F. S. Ruiz, , J. C. Souza, F. V. Narciso, A. M. Esteves, R. da Cunha Soares Junior, and et al., “Accident risk factors among brazilian shift-working truck drivers,” Health Science Journal, vol. 9, no. 6, Oct. 30, 2015. [Online]. Available: https://bit.ly/38e1SCu
E. B. Sánchez and R. Pazmiño-Maji, “Determinación de las principales causas de accidentes de tránsito en el ecuador desde el 2016 hasta 2018,” KnE Engineering, Tech. Rep., 2020.
R. L. F. de Almeida, J. G. B. Filho, J. U. Braga, F. B. Magalhaes, M. C. M. Macedo, and K. A. Silva, “Via, homem e veículo: fatores de risco associados à gravidade dos acidentes de trânsito,” Revista de Saúde Pública, vol. 47, no. 4, Aug. 2013. [Online]. Available: https://pesquisa.bvsalud.org/portal/resource/pt/lil-695413?lang=es
Y. Wang and W. Zhang, “Driving commerce to the web—corporate intranets and the internet: Lines bluranalysis of roadway and environmental factors affecting traffic crash severities,” Transportation Research Procedia, vol. 25, 2017. [Online]. Available: https://doi.org/10.1016/j.trpro.2017.05.407
A. R. G. García, M. R. Puga, P. R. S. Bermúdez, F. A. C. Ortega, M. C. C. Miño, and L. A. G. Jijón, “Caracterización de la mortalidad por accidentes de tránsito en ecuador, 2015,” Universidad Internacional SEK Ecuador, Ecuador, Tech. Rep., 2016.
J. J. Rolison and S. Moutari, “Combinations of factors contribute to young driver crashes,” Journal of Safety Research, vol. 73, Jun. 2020. [Online]. Available: https://doi.org/10.1016/j.jsr.2020.02.017
F. Gómez and J. P. Bocarejo, “Accident prediction models for bus rapid transit systems: Generalized linear models compared with a neural network,” Transportation research record, vol. 2512, no. 1, Jan. 1, 2015. [Online]. Available: https://doi.org/10.3141/2512-05
Z. Fan, C. Liu, D. Cai, and S. Yue, “Research on black spot identification of safety in urban traffic accidents based on machine learning method,” Safety Science, vol. 118, Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.ssci.2019.05.039
O. S. Balogun, S. A. Olaleye, X.-Z. Gao, and P. Toivanen, “Concomitant with nigerian road traffic accidents: an application of a generalized linear model,” in Proceedings of the 37th International Business Information Management Association (IBIMA), Córdoba, España, 2021, pp. 1040–1050.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.





Twitter