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Resumen: El método Monte Carlo se aplica a varios casos de valoración de opciones
financieras. El método genera una buena aproximación al comparar su precisión con la
de otros métodos numéricos. La estimación que produce la versión Cruda de Monte Carlo
puede ser aún más exacta si se recurre a metodologías de reducción de la varianza entre
las cuales se sugieren la variable antitética y la variable de control. Sin embargo, dichas
metodologías requieren un esfuerzo computacional mayor por lo cual las mismas deben
ser evaluadas en términos no sólo de su precisión sino también de su eficiencia.

Palabras clave: método Monte Carlo, valoración de opciones, opciones financieras,
métodos numéricos. Clasificación JEL: C15, G12.

Abstract: The Monte Carlo method is applied to various cases of financial option
pricing. Its performance is satisfactory in terms of accuracy when it is compared to other
numerical methods. The precision of the estimates provided by Crude Monte Carlo can be
improved by implementing variance reduction techniques such as antithetic variate and
control variate. However, the use of these techniques implies a greater computational effort;
thus, there is a trade-off between a lower variance estimator and a higher computational
requirement which demands us to check not only for the accuracy of the estimator but also
for its efficiency.

Keywords: Monte Carlo Method, Option Pricing, Financial Options, Numerical
Methods. JEL: C15, G12.

Résumé: La méthode de Monte Carlo est appliquée à de divers cas de l'évaluation
financière d'option. Son exécution est satisfaisante en termes d'exactitude quand elle est
comparée à d'autres méthodes numériques. La précision des évaluations fournies par la
version Brut  Monte Carlo peut être plus precise si on  applique des techniques de réduction
de la variance telles que  la variable antithétique et la variable de controle. Cependant,
l'utilisation de ces techniques implique un plus grand effort informatique ; ainsi, on doit
évaluer non seulement l'exactitude de l'estimateur mais également son efficacité.

Mots-clés : Méthode De Monte Carlo, Évaluation des Options, Options Financières,
Méthodes Numériques
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Introduction

The theory of option pricing continues under construction even though more
than thirty years have passed since the publication of the groundbreaking work by
Black, Scholes, and Merton. One of the reasons for such a great interest in this
subject is the wide range of its applications, which go from financial derivatives to
capital budgeting, and more recently, to corporate valuation. In the beginning,
options were thought as useful instruments to hedge risk, offering an infinite
upside potential and a floor for losses equivalent to the premium or cost of the
option. Later on, this concept has been extended to strategic investments under the
name of real options. This type of options recognize the flexibility investment
decision-makers have to undertake, defer, or abandon an investment, once more
information about the project is known.

The critical factor in option pricing is “the precise description of the stochastic
process governing the behavior of the basic asset” (Cox and Ross, 1976, p.146). The
Black-Scholes formula is exact when the underlying follows a lognormal distribution.
However, in real life, that is not the case and numerical methods shall be used
instead. Frequently, asset prices follow non lognormal processes such as stochastic
volatility or jump-diffusion ones.

* Cecilia Maya Ochoa: Profesora Departamento de Finanzas, Escuela de Administración, Univer-
sidad EAFIT, bloque 26, oficina 509, Medellín, Colombia. Dirección electronica: cmaya@eafit.edu.co
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In search of an appropriate method to value options in the aforementioned
cases, firstly, I present an overview of the different methods that have been
suggested by the literature on option pricing. The conclusion from this overview is
that the Monte Carlo method has appealing characteristics as an option valuation
method, such as flexibility to function with different distributions, even empirical
distributions of the underlying variables. Additionally, it can incorporate
discontinuities such as those that arise from jump processes. The next step will be
showing that it is also an accurate and efficient method. In what follows next, I test
the Monte Carlo method to value European options with and without dividends.
Once variance reduction techniques are implemented, this method proves to be
efficient and accurate to value options.

I. Overview of Option Valuation Methods

Many option valuation methods have been developed through the years after
Black and Scholes published their work in 1973. Most of these methods being
devoted to overcome the limitations of the Black and Scholes model, mainly that
it can be used to value European options only and that this model demands the
underlying asset to follow a lognormal distribution. Also, its solution is exact for a
non-dividend paying stock or a stock which pays a continuous dividend proportional
to the stock price only. For other cases, numerical methods must be used.

Trigeorgis (1991) classifies numerical techniques for option valuation in two
groups:

—The first group comprises those approximating the underlying stochastic
process directly, such as the binomial method (Cox, Ross and Rubinstein, 1979), the
Log-transformed binomial (Trigeorgis, 1991), and the Monte Carlo simulation by
Boyle (1977).

—The second group includes those approximating the resulting partial
differential equations, such as Parkinson’s (1977), and the finite differences
schemes used by Brennan and Schwartz (1977, 1978).

Among these methods, the binomial model is probably the most simple and
widely known. As Black and Scholes, they also start with a hedged portfolio where
the value of the option “can be obtained by discounting the expected maturity value
of the option at the risk free rate. The distribution of the maturity value of the
option can be obtained from the distribution of the terminal stock value. Thus if the
distribution of the terminal stock value is known the value of the option can be
obtained by integration” (Boyle, 1977).
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Both methods, binomial model and Black-Scholes, are simple and exact and
that is probably the reason for their popularity. Compared to them, the Monte Carlo
method will prove to be simple as well, offering very good approximations to the
exact value of the option once variance reduction techniques are applied and, at the
same time, allowing for greater flexibility which is greatly helpful at the time of
valuing options. This flexibility comes from the fact that the distribution of terminal
stock prices is determined by the process generating future stock price movements,
a process that can be simulated on a computer. Once the terminal prices are
obtained, the value of the option can be determined as well as the standard deviation
of the estimation in order to determine the accuracy of the results.

The Monte Carlo method allows us to value options even when the underlying
stochastic process is not a continuous one as it is required by the Black-Scholes
model or when it does not follow a discrete binomial process as required by the
binomial model. Jump processes, or mixtures of continuous with jump processes,
even processes where what we know is just the empirical distribution, could also
be modeled using Monte Carlo.

Next, I test the Monte Carlo method to value European options with and
without dividends following the methodology first described by Boyle (1977). I will
apply Monte Carlo to the same cases that have been used to test some other
methods in order to compare its performance relative to these other methods.

II. Valuing European call options using Monte Carlo

In this section I apply the Monte Carlo methodology for valuing options to both,
non-dividend and dividend paying stocks. This method works in the following way:

If the price of the stock, S, follows a geometric Brownian motion, then,

dS/S =α dt +

σ

dz.                                                                                       (1)
   is the drift rate,   is the periodic standard deviation, and dz is a Wiener

process. Let G = ln S. According to Ito’s lemma, the process followed by G is an
arithmetic Brownian motion as follows:
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where dG are i.i.d. and normally distributed with mean: /2)dtσ(α 2− and
variance: dtσ2

Since it is possible to build a perfectly hedged portfolio comprised i.e. of a long
position in one unit of the underlying asset, S, and a short position of n call options
on it, in a way that the investor will be indifferent to the event of increasing or
decreasing asset prices, the hedged portfolio should offer a rate of return a equal
to the risk-free rate, r (Cox and Ross, 1976). Derivative assets can be valued under
an assumption of risk-neutrality since preferences do not matter in this circumstance.
Thus, under this assumption of risk neutrality, dG are i.i.d. and normally
distributed with mean: /2)dtσ(r 2− and variance: dtσ2 .

Based on the properties of the lognormal distribution, a risk-neutral or
“equivalent martingale” distribution of asset prices can be generated in the
following way:

σdzdt
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whereε  is a normally distributed random variable with a zero mean and unit
variance.

In order to apply the Monte Carlo method to the valuation of a call option on
a non-dividend paying stock, firstly, a set of stock prices (St+1…ST) is generated
through a series of simulation trials. Secondly, the expected payoff from the option
is computed as the risk-neutral mean —E*— of the maxima of the underlying
asset’s values at the expiration of the option minus the exercise price X or zero:

(4)

The risk-neutral mean is then discounted at the risk-free rate to get the
estimated value of the call option, Co:

[ ]X,0)Max(SE*eC T
*
0

rT
0 −= − (5)

The confidence interval of the estimate is n)s*-(2|Co += , where s is the
standard deviation of Co and n is the number of paths used in the Monte Carlo
simulation. Contrary to an analytical method such as Black-Scholes which gives an
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exact value for the option, the Monte Carlo gives us a distribution for C. In this case
of a call option on a non-dividend paying stock, there is an analytical solution, but
in many other cases there is no analytical solution and a numerical method such
as Monte Carlo should be used.

In order to analyze Monte Carlo’s performance compared to other methods, I
apply it to a call option on an asset with initial value of 40 and volatility of 30%, and
different exercise prices at 35, 40, 45; the risk-free rate is 5%, and different time to
expiration of 1, 4, and 7 months. By using all these parameter values I will be able
to conclude how the method behaves for a wide range of cases when the option is
in, at, out of the money and when it has different expiration times. Monte Carlo
option values are shown in figure 1. As expected, the deeper the option is in the
money, i.e. X = 35, the greater the value of the option. Also, longer maturity adds
value to the option.

Figure 1. Monte Carlo Option Value

The parameter values used to analyze the performance of Monte Carlo are the
same suggested by Geske and Sastri (1985) to compare a variety of numerical
techniques for valuing options when analytic solutions do not exist. They focus both
on the approximation theory and on the efficiency of the computation algorithms.
I focus only on the ability of Monte Carlo to provide a good approximation since
based on current development of computer hardware and software, computational
efficiency is not an issue any more.
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Table 1 shows the results obtained by using Monte Carlo compared to the
results obtained by six other methods. These methods are Black-Scholes which
provides an analytical solution, and five numerical methods which are the Binomial
(Cox, Ross, and Rubinstein, 1979) and different versions of the finite differences
methods by Brennan and Schwartz (1978): Finite Difference Explicit #1 (FDE1),
Finite Difference Explicit #2 (FDE2,)1 Finite Difference Implicit #1 (FDI1), and
Finite Difference Implicit #2 (FDI2).2

It can be seen how the Monte Carlo method offers a good approximation to the
exact option value which is the one computed using Black-Scholes. The Monte Carlo
value is, in most cases, equivalent to the mean of the values obtained using the other
six methods, with the exception of the case where the option is in the money with
an exercise price of 35 and one month to maturity. In every case, the benchmark
value given by the Black-Scholes method is in the confidence interval. The standard
errors of the estimation are in the range of a very low value of .0023 for the out-of-
the-money option —S/X = 40/45 with one month to maturity— up to .025 for the in-
the-money options —S/X = 40/35 with seven months to maturity— but still, a low
standard error.3 However, the accuracy of these results can be improved recurring
to methods of variance reduction that will be addressed soon.

Table 1. Numerical Methods for Option Valuation. A Comparison

1 Logarithmic transform of FDE1 by Brennan and Schwartz (1978).

2 Logarithmic transform of FDI1 by Brennan and Schwartz (1978).

3 There is no single rule about which is the acceptable level for the error of the estimation. I will
consider a level of .05 as acceptable which is the same level required by Boyle (1977).

 continue...
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Next, following Boyle (1977), I compute the value of a European call option on
a discrete dividend paying stock.4 Since there is no analytical solution in this case,
a numerical method should be used. As a benchmark for a good approximation to
this option value I will use a numerical integration approach based on a trapezoidal
rule by Chen (1969).5 In this case, to simulate the stock price possible paths, St is
assumed to be the price of the stock immediately after the quarterly dividend Dt has
been paid. Then, if St+1 is greater than Dt+1, (St+1 – Dt+1) is used as the initial value
at the start of the second period and the procedure is continued until ST, the final
value, is obtained. If at some point St+m ( m = 1,2,….(T-t-1) ) is less than or equal to
the dividend payment Dt+m, the process stops and another simulation trial is started.
The rest is similar to the process described in the case of a non-dividend paying stock
where the risk-neutral expected value of Max [ST–X, 0] is then discounted at the
risk-free interest rate to obtain the option value Co. Table 2 shows the results
obtained with one hundred thousand trials and compares those values with the
accurate values obtained by the benchmark method.

4 When the dividend is continuous, Black-Scholes gives an exact solution replacing the drift rate
r by (r-δ), where δ is the dividend yield.

5 Cited by Boyle (1977).

Table 1. Continuation

40 

Montecarlo 
error 
Conf, Interval* 

Black- Scholes 
Binomial 
FDE1 
FDE2 
FDI1 
FDI2 

1,4622 
               0,069 

[1,4486  1,4758] 
1,46 
1,46 
1,46 
1,47 
1,46 
1,46 

3,0751 
       0,0148 

 [3,0461  3,1042] 
3,07 
3,07 
3,08 
3,08 
3,08 
3,08 

4,2018 
            0,0205 

[4,1616  4,2421] 
4,19 
4,19 
4,20 
4,20 
4,20 
4,20  

45 

Montecarlo 
error 
Conf, Interval* 

Black- Scholes 
Binomial 
FDE1 
FDE2 
FDI1 
FDI2 

0,1606 
             0,0023 

[0,1562    0,1651] 
0,16 
0,16 
0,16 
0,17 
0,16 
0,17 

1,2627 
       0,0098 

[1,2435  1,2819] 
1,25 
1,25 
1,26 
1,26 
1,26 
1,26 

2,2480 
           0,0156 

[2,2175  2,2785] 
2,24 
2,24 
2,24 
2,25 
2,24 
2,25 

  Time to Maturity (months) 
Excercise 

price $ Solution Technique 1 4 7 

*95 confidence level



62

Maya: Monte Carlo Option Pricing

S/X 
No-periods 
to maturity 

Option values 
by Montecarlo 
5000 trials 

St,deviation of 
Montecarlo 
estimates 

Option values 
by Montecarlo 
100000 trials 

St,deviation of 
Montecarlo 
estimates 

Acurate option 
values by num, 
Integration 

25/50 

2          
4          
8          

16 

0,0040                
0,0870                
0,5390                
1,8970 

0,0020               
0,0140               
0,0470               
0,1080 

0,0031               
0,0757               
0,5436               
1,9552 

0,0004               
0,0030               
0,0106               
0,0269 

0,0030                
0,0750                
0,5410                
11,9570 

50/50 

2          
4          
8          

16 

5,1210                
7,4270                
10,7930              
15,0790 

0,1140               
0,1700               
0,2580               
0,3890 

5,0233               
7,2566               
10,5140             
15,0953 

0,0248               
0,0374               
0,0571               
0,0903 

5,0280                
7,2510                
10,4930              
15,0900 

75/50 

2          
4          
8          

16 

26,4450              
28,2500              
31,2570              
35,5030 

0,2400               
0,3330               
0,4700               
0,6660 

26,4047             
27,8246             
30,9003             
35,5712 

0,0530               
0,0734               
0,1052               
0,1542 

26,3690              
27,8190              
30,7130              
35,5580 

Table 2. European Call Option without Dividends. Monte Carlo Valuation

6 Crude Monte Carlo may be defined as the applying this estimation technique without any
variance reduction adjustment.

Boyle (1977) run five thousand trials and the estimates obtained then are also
given to show how the accuracy of the method increases when a greater number
of trials is performed. The number of trials, n, is a critical issue in applying the
Monte Carlo method since the standard deviation of the estimation is inversely
proportional to the squared root of n. In this case, as it is shown in table 2, although
increasing the number of trials improves the accuracy notably, still the standard
deviation of the estimation reaches unacceptable levels greater than .05, specially
for those options that are deep in-the-money.

Figure 1 shows how the option values are higher when the option is deeper in
the money or the number of periods to expiration increases. When the option is out-
of-the-money, the estimation obtained by what can be called crude Monte Carlo6 is
close to the accurate value given by the benchmark up to two decimal places.
However, as the option gets at or in-the-money or the time to maturity increases,
the method becomes less precise, and confidence intervals widen. I will address this
problem by resorting to different methods oriented to reduce the varianceof the
estimations.

III. Variance Reduction Techniques

The precision of the estimates provided by crude Monte Carlo is in many cases
below an acceptable level, therefore, variance reduction techniques shall be used
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to improve the results. However, the use of these techniques implies a greater
computational effort; thus, there is a trade-off between a lower variance estimator
and computational requirements. I will require, then, a measure of efficiency for
the estimators that properly portraits this trade-off.

Suppose there are two estimators requiring computer time b1 and b2,
respectively, in a period of time t. The number of replications that can be performed
is t/b1 or t/b2. Using Monte Carlo, these two estimators will be:

∑∑
==

t/b2

1i
2i

2
t/b1

1i
1i

1 θ�
t

b
;θ�

t
b

For large t, these estimators are approximately distributed with mean q and

standard deviations: /tbσ 11 and /tbσ 22 then, is the lower variance estimator if:

2
2

21
2

1 b*σb*σ 〈 (6)

thus, in terms of efficiency, the lower variance estimator will be preferred to only
if the variance ratio is smaller than the work ratio b2/b1  (Boyle et al., 1997). In what
follows next, I attempt to improve the estimations obtained in the previous section
by implementing different variance reduction techniques and compare the estimators
used for this purpose with the crude Monte Carlo estimator in terms of efficiency.

Figure 2. European Call Option without dividends Monte Carlo Option Values
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A. The Antithetic Variate Method.
This method focuses on the procedure used to generate random deviates,

introducing a negative correlation between two estimates. In the case of option
valuation,the innovation, is a random normal variable with zero mean and unit
variance and so will be negative.

The antithetic variate method consists of getting two different estimates of the
option values where the first one is obtained by using  and the second one by using
negative  to generate a set of stock price paths. The revised estimate will be the
mean of these two estimates, Γ, and its standard error will be which is generally
less than the standard error calculated using 2n random trials. The argument for
preferring the antithetic variate estimator is that the random inputs obtained from
and negative e are more regularly distributed that a collection of 2n independent
samples. Their sample means will be zero whereas the mean for two independent
samples is almost surely different from zero. Since the inputs are more regular, the
outputs will probably exhibit greater regularity as well.

Table 3. Option Valuation using Monte Carlo and Antithetic Variance Method

7 These results are shown in table 2.

For the case of a dividend paying stock, the results obtained using the antithetic
variate method are shown in table 3. By using this method, the accuracy of the
Monte Carlo estimates is improved compared to crude Monte Carlo,7 with correct
values up to the first decimal place even for options at or in-the-money where the
estimations given by crude Monte Carlo are not accurate enough. For the antithetic
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variate method, the standard errors of the estimates are, in most cases, below
theacceptable level of .05.

From an efficiency point of view, the work required to generate the antithetic
variate estimator doubles compared to the crude Monte Carlo method. Thus, for the
antithetic variate estimator to be more efficient

2
c

2
av σσ*2 < (7)

where avσ  is the standard deviation of the antithetic variate estimator and σc
is the standard deviation of the crude Monte Carlo estimator. Table 4 shows how
the antithetic variate estimator is in deed more efficient, especially for deep in-the-
money options for which the variance is above an acceptable level.

Table 4. Comparison of Variance Reduction Methods in Terms of Efficiency

A. The Control Variate Method.
According to Hull (2000) this method is applicable when there are two similar

derivatives, A and B. A is the derivative under consideration and B is another
derivative that has an analytic solution available. In this case, A will be the

 

Variance 
Crude 

MonteCarlo 

Two times 
Antithetic 
Variance 

Two times 
control Variate 

Variance 

S/X= 25/50    
No. of periods  

2             
4             
8             

16 

0,000000          
0,000009          
0,000117          
0,000729 

0,000000          
0,000008          
0,000113          
0,000707 

0,000000               
0,000000             
0,000007               
0,000072 

S/X= 50/50    
No. of periods  

2             
4             
8             

16 

0,000610          
0,001376          
0,003318          
0,008046 

0,000359          
0,000865        
0,002191         
0,005919 

0,000000               
0,000003             
0,000020             
0,000104 

S/X= 75/50    
No. of periods  

2             
4             
8             

16 

0,002809          
0,005432          
0,010899          
0,023994 

0,000204          
0,000959          
0,003613          
0,012262 

0,000000               
0,000012             
0,000077 
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European call on a dividend paying stock and B will be an European call on a non-
dividend paying stock which has an exact solution given by Black-Scholes. If we
assume that A will pay dividends only after the exercise date and, thereafter, it
performs exactly like a non-dividend paying stock, an investor should be indifferent
between A and B —assuming same maturity and expiration date; then B will be a
suitable control variate for A. After finding a proper control variate, two simulations
are run using the same innovation e and the same number of time-steps.

From the first simulation I obtain an estimate, of the value of A; from the
second simulation I estimate of the value of B. Compared to crude Monte Carlo, a
better estimate of the value of A, FA, is obtained by computing:

                                           (8)

where FB is the Black-Scholes value of the European call option on a non-
dividend paying stock that is the known true value of B. The variance of this
estimate is:

                                                                                                    (9)

Therefore, the effectiveness of this method will depend on a large covariance
between the simulated estimates of A and B.

Table 5 shows the Monte Carlo estimates of the option value, FA, the
estimation error and the 95% confidence interval using the control variate
method.Also, the accurate option values obtained by numerical integration are
displayed (Boyle, 1977).

Table 5. Control Variate Technique

( ) BBAA FF̂F̂F +−=

)F̂,F̂2Cov()F̂Var()F̂Var()Var(F BABAA −+=

S/X
No periods to 

maturity

Option values 
Control Variate 

method
St. Dev. of estimate 

w/control variate
Confidence interval 

95%

Accurate option values 
by numerical 
integration

25/50

2              
4              
8              

16

0,0029          
0,0751          
0,5411          
1,9530

0,0000              
0,0004              
0,0019              
0,0060

0,0028      0,0030          
0,0743      0,0759          
0,5374      0,5448          
1,9412      1,9648

0,003                     ok        
0,075                     ok        
0,541                     ok        
1,957                     ok

50/50

2              
4              
8              

16

5,0280          
7,2519          
10,4884         
15,0887

0,0004              
0,0013              
0,0032              
0,0072

5,0272      5,0288          
7,2494      7,2544          
10,4821  10,4947          
15,0746  15,1028

5,028                     ok        
7,251                     ok        
10,493                   ok        
15,090                   ok

75/50

2              
4              
8              

16

26,3691         
27,8193         
30,7097         
35,5481

0,0002              
0,0008              
0,0024              
0,0062

26,3687   26,3695         
27,8177   27,8209         
30,7050   30,7144         
35,5359  35,5603

26,369                   ok        
27,819                   ok        
30,713                   ok        
35,558                   ok
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The control variate estimates are completely satisfactory in terms of accuracy
and efficiency. Although computer time doubles, the reduction in the variance is
much greater than one half, thereby increasing efficiency (See Table 4). The
accuracy of the estimation improves providing precise estimates up to three
decimal places for options with maturities up to one year and two decimal points
for longer maturities. The standard error of the estimates is greatly reduced, being
just .007 the largest one. Finally, in all sixteen cases, the 95 percent confidence
interval contains the accurate option value obtained by numerical integration.

This methodology for variance reduction can be improved in a way suggested
by Boyle et al. (1997). Instead of (2,8) I may use:

)F�β(FF�F BBA
β
A −+= (10)

Where

)�,�(*2)�()�()( 2
BABAA FFCovFVarFVarFVar βββ −+= (11)

The variance-minimizing *β  is:

)F�)/Var(F�,F�Cov(β BBA
* =
*β can take a value different than one which is the value implicit in (8). A lower

variance may be obtained by using (10) with *β instead. By applying (10) it is
possible to get a lower variance estimator, never a higher variance one.

In order to estimate  *β . I run a regression of AF�  on BF�  to get β� since I do not know
the actual

)F̂,F̂Cov( BA

 . However, will introduce a bias in the estimator equal to:

∑ ∑ 







−+ BiBAi F

n
1Fβ�F

n
1

(12)

Still, this methodology can be applied because this possible bias decreases as
n increases and the estimator of *β does not require to be very precise to achieve
variance reduction.

Table 6. Control Variate Technique Adjusted for Beta

Continue...

S/X
No periods to 

maturity Beta

Option values 
Control Variate 

method-beta

St. Dev. of 
estimate 
w/control 
variate

Confidence 
interval 95%

Accurate option values 
by numerical 
integration

25/50

2            
4            
8            

16

0,9315      
0,8999      
0,8728      
0,8388 

0,003          
0,075          
0,541          
1,959

0,0000      
0,0003      
0,0012      
0,0035

0,0029      0,0030     
0,0747      0,0757     
0,5387      0,5434     
1,9524      1,9661

0,003                     ok       
0,075                     ok       
0,541                     ok       
1,957                     ok
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The results obtained by adjusting the estimator for β are positive in the sense
that a large reduction in variance is achieved compared to the variance obtained
when β is one as in (8). The significant reduction in the standard deviation of the
estimates is shown in Table 7. Since this methodology’s only additional requirement
in computer time is the calculation of β , and the reduction in variance is significant,
I conclude that the beta adjusted control variate technique increases the efficiency
of the Monte Carlo estimator.

Table 7. Estimation Errors for Different Control Variate Techniques

As Boyle (1977) remarks, the introduction of an appropriate control variate
provides a very efficient variance reduction technique in this case; however, in
some other cases it may be difficult to find a suitable control variate. In those cases,
other methods such as the antithetic variate must be used.

Table 6.  Continuation

50/50

2            
4            
8            

16

0,9836      
0,9667      
0,9476      
0,9273

5,028          
7,252          
10,495         
15,093

0,0003      
0,0010      
0,0022      
0,0048

5,0271      5,0284     
7,2498      7,2535     
10,4910  10,4996     
15,0841  15,1029

5,028                     ok       
7,251                     ok       
10,493                   ok       
15,090                   ok

75/50

2            
4            
8            

16

0,9929      
0,9830      
0,9697      
0,9541

26,369         
27,822         
30,712         
35,556

0,0002      
0,0008      
0,0022      
0,0046

26,3683   26,3691    
27,8203   27,8235    
30,7078   30,7164    
35,5465   35,5645

26,369                   ok       
27,819                   ok       
30,713                   ok       
35,558                   ok
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In summary, the Monte Carlo method can be successfully used to value options
since this numerical method provides a good approximation to the correct value of
the option once adequate variance reduction techniques are applied.

Conclusions

In conclusion, Monte Carlo has appealing characteristics as an option valuation
method, such as flexibility to function with different distributions, even empirical
distributions of the underlying variables. Additionally, it can incorporate
discontinuities such as those that arise from jump processes. For these cases, there
are no analytical solutions thus requiring the use of a numerical method such as
Monte Carlo.

The performance, in terms of accuracy, of the Monte Carlo method in
comparison to other numerical methods is satisfactory. Its estimate is, in most
cases, equivalent to the mean of the values obtained by using the other methods
to value options which are in, at, and out-of-the-money and with different time to
expiration. In every case, the benchmark value given by the Black-Scholes method
is in the confidence interval of the Monte Carlo estimation.

The precision of the estimates provided by crude Monte Carlo can be improved
by implementing variance reduction techniques. However, the use of these
techniques implies a greater computational effort; thus, there is a trade-off between
a lower variance estimator and computational requirements.

One of such techniques is the antithetic variate method. By using this method,
both the accuracy and the efficiency of the Monte Carlo estimates are improved
compared to crude Monte Carlo. The other variance reduction method is the control
variate which estimates are completely satisfactory in terms of accuracy and
efficiency. Although computer time doubles in comparison to crude Monte Carlo,
the reduction in the variance is much greater than one half, thereby increasing
efficiency. As Boyle (1977) remarks, the introduction of an appropriate control
variate provides a very efficient variance reduction technique, however, in some
cases it may be difficult to find a suitable control variate. In those cases, other
methods such as the antithetic variate must be used.

In summary, the Monte Carlo method can be successfully used to value options
since this numerical method provides a good approximation to the correct value of
the option once adequate variance reduction techniques are applied.
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