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ABSTRACT 

 

Studies performed on energy levels in Fermi surface in groupings showed that crystals have 
plans periodically gathered. On the contrary, quasicrystals have their plans reunited non 
periodically. This paper shows the development of a mathematical model comprising not only 
the symmetries of AlMnPd alloys but also the physical stability of groupings versus AlCoNi 
geometry by considering Fermi energy in its surface. The model also discusses electron 
conductivity, quantum interfaces in quasicrystals, its physical formation and chemical 
properties. The model allows a better understanding of interactions between atoms in the 
quasicrystals formation, functioning of energy bonds and of gaps and pseudogaps in the 
electronic structures of quasicrystalline materials. 
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1. INTRODUCTION 

Mathematical models for quasiperiodic structures are generally described by atomic 
groupings for modelling the structure of quasicrystals. Also, they contribute to understand the 
physical and chemical properties of quasicrystals. Groupings are tightly connected by 
covalent and metallic liaisons. This property was the basis to develop the Grouping Model for 
quantum formalism at the Fermi surface [1] presented in this paper. 
Quasicrystals are atomic ordered structures that exhibit quasiperiodic translational order of a 
long range. These structures show forbidden crystallographic symmetries and are prepared by 
fast cooling techniques. Quasicrystals are good electric and thermal insulating materials. They 
exhibit unusual combinations of physical properties such as high hardness, low friction and 
good oxidation resistance. They also can be utilized as hydrogen source showing many 
advantages when compared to other materials3.   Grouping Model shows examples of 
AlMnPd symmetries of 2/1 approximations in which a grouping of 9/12 spheres was derived 
with a 21, 21 Å diameter and was used to describe the structure in icosahedral phase [2]. 
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These characteristics can be seen in the rotational spheres and are defined as a disorder in the 
icosahedral symmetry break of the AlMnPd quasicrystalline alloy as shown in Figure 1 [3]. 
 

 

Figure 1. AlMnPd quasicrystalline alloy with grouping of icosahedral symmetry. 

In the AlCoNi decagonal quasicrystal, the symmetry of grouping makes the structure of 
stability to present differentiated geometries. Between them and when the effects of Fermi 
energy are considered, an intrinsic disorder is observed [4]. Due to this performance, studies 
on quasicrystals groupings are becoming more intensive. More recently, the literature shows 
several studies on thermal, electric and magnetic properties of quasicrystals as, for instance, 
specific heat measurements studies. 
 
2. THEORETICAL CONSIDERATIONS 

 

At high temperatures, electrons are dispersed by vibrations of the quasicrystalline net. 
Consequently, a loss of moment of the resistivity is observed causing a structure disorder. At 
low temperatures, the dispersion between electron – electron is the dominant mechanism [5]. 
This behavior is also responsible for enlarging the atomic holes observed after the melting 
process of the material. This happens because of the oxidation process in its surface. 
 
The process of thermal treatment does not reduce the defects of surface, but causes electron 
dispersion in the net. Therefore, it can be considered an important factor for the catalytic 
reactions. When temperature is close to zero, a residual appears among electrons of the 
quasicrystal grouping. As a result, the disorders in the quasicrystalline net are impurities and 
vacancies. 
 
For quasicrystalline materials can be applied Boltzmann transport equation in which the 
resistivity of material at low temperature can be described according to the following equation 
[6]: 
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         ( ) . n

o
T A Tρ ρ= + ∆                                                                                        (1) 

 
The above equation written in terms of conductivity gives: 
 

         2( ) . n

o o
T Tσ σ σ= + ∆                                                                                      (2) 

 
In equation (2) σ and ρ are conductivity and resistivity, respectively; η depends on the type of 
dispersion (in this case η = 2 or electron – electron and η = 3 to 5 for electron – phonon) and 
A is a positive constant. The terms ρ and σ are physical characteristics related to dispersion 
mechanism with vacancies created in the thermal treatment process. This mechanism 
originates gaps and pseudogaps in the electron – electron interaction of the quasiperiodic 
structure [7]. 
 

3. THEORY OF GROUPING MODEL IN FERMI SURFACE 

 

The model describes the formation of periodical and non periodical structures with forbidden 
allowed symmetries. In crystalline and quasicrystalline materials, an electron wave function is 
defined as [8]: 

( . )( ) ( ). ik r
r r eψ µ=

r rr r
                                                                                               (3) 

In the above equation Ψ ��������� is the wave function; µ ��������� is the reduced mass of a 
quasicrystalline net structure, ������ is the wave vector and �� is the unitary vector. 

This function explains the symmetries of electron propagation in the net as well as the 
quantum transport of energy fulfilling the equation of Schrödinger given by [9]: 

2
2

. ( ) ( ). ( ) . ( )
2

r V r r E r
m

ψ ψ ψ− ∇ + =
uur r r r rh

                                                                   (4) 

where, 

2
h  represents the Planck constant, 

2
∇
ur

 is a laplacian operator; m is the mass of system, ( )rψ
r

is 

the wave function of the electronic system, ( )V r
r

 is a potential function for the 
quasicrystalline net and E is the energy of the quasicrystalline structure. 

In quasicrystalline structures the model applies the concept of state density defined as N(E) 
dE  and the cluster model of the Fermi surface, can be used to study the adsorption and 
transport of solid surfaces or catalysts, which can describe the electronic density of states and 
transitions of alkali metals, used within the active sites of substrates. ; i.e., the number of 
autostate per unit of volume of an electronic system for a given direction of spin with energies 
E, described by the following equation [10]:  

0

3
( ). .

5

oN

F t o FE E n dN N E= =∫                                                                                 (5) 

where the Fermi energy of the surface is, 
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the final calculation of the total energy of the Fermi surface quasicrystal is: 
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Once the Fermi energy is the total surface, 
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π
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h
                                                                                            (8) 

 

During the process for melting a quasicrystalline alloy, the temperature T of the set of 
electrons in the energy interval such as dE for each direction of spins in the structure causes 
modifications in the net. The function f (E) describes a population of energy density as a 
function of Fermi distribution in quasicrystalline groupings. Equation for this function is 
given by: 

( )

1
( )

1
i F

B

E

k T

f E

e

ε −
=

+

                                                                                               (9) 

 

where:  
i

ε is the energy in the i-th state;
F

E is the potential energy of the Fermi surface;T is the 

temperature;
B

k  the Boltzmann constant. Figure 2 describes the distribution below the Fermi a 
function of temperature, temperatures employed in states with higher solids. 
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Figure 2. Fermi distributions function of temperature, temperatures employed in states with 
higher for solids. 

 
The physical interpretation of the solids at low temperatures, the Fermi distribution is a step 
function that is 1 if 

i F
Eε <  and 0 if 

i F
Eε > . This means that the particles will be positioned 

from the lower energy level to above due to the Pauli Exclusion Principle have been made 
until all particles [11]. The energy of the last occupied level is called the Fermi energy and the 
temperature that corresponds to this energy by: 
 

.
F B F

E K T=                                                                                                       (9) 

                                                      

the Fermi temperature. If the condition that the Fermi temperature of most metals is great 
actual (approximately 103 K), therefore the approximation to say that the Fermi distribution 
remains a scalar to room temperature, which is valid with high precision. The Fermi statistical 
distribution is most commonly used to study the transport behavior of electrons in crystalline 
and quasicrystalline solids. 
 
Calculations of N (E) and its correspondent auto functions for a quasiperiodic net are carried 
out according to the following approaches: 
(1) The first approach considers the approximation of the free electron in the quasicrystalline 
net as a weak electronic dispersion in which its energy can be described by the equation: 

2 2.
2.

k
E

m
=
h

                                                                                                        (6) 

where, k  is the wave vector and m is the effective mass of the quasicrystalline structure. 



Grouping Model In Fermi Surface Applied t

 

In this case, Fermi surface is spherical and has density of states given by each direction of 
spin of the system structure due to the approximation of the free electron in the 
net. N (E) is now defined as follows

2

3

2 2 2 3
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N E
dE
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π

π
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= = =
h h

(1) In the second approach, 
In these nets, phonons or impurities or other centers of
defect in the quasicrystal grouping. 
as L that distributes the electro

In this approach, electron interaction
Furthermore, it is observed that these interactions modify the quasicrystal structure, its 
groupings and the electron transportation in its surface next to Fermi energy. 
observed the creation of states “in 
behavior of crystalline and quasicrystalline materials.

The presence of centers of dispersions influences the grouping movement of the free 
electrons. This movement is observed when they are submitted to fields of temperatures 
which are created in thermal treatment. Hence, the net vibra
quantum level spreading the electrons in the quasicrystalline net.

Figure 3 illustrates two types of situations for weak electric field of ionic nature for 
quasiperiodic structure [13]. 

 

Figure 3. Illustration of two types of situations of weak electrical field of ionic nature for 
quasiperiodic structure (a) small dispersion center in the net and (b) concentrated dispersion 

 

Figure 3(a) shows that the centers of dispersion are few and do not influence the 
electron in the net. In Figure 3
in the net which change the tr
origin. As a result of the increase in concentration of dispersion
electrons in Fermi surface in quasicrystals
states with finite states densities limiting the wave function
rotations. In this figure the collisions do not influence significantly the movement of electrons 
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Fermi surface is spherical and has density of states given by each direction of 
spin of the system structure due to the approximation of the free electron in the 

follows [12]: 
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In the second approach, both quasicrystalline and crystalline net are
In these nets, phonons or impurities or other centers of dispersion introduce a kind of 
defect in the quasicrystal grouping. Therefore, it can be seen as free medium way such 
as L that distributes the electron propagation in Fermi surface. 

, electron interactions with the centers of dispersion 
Furthermore, it is observed that these interactions modify the quasicrystal structure, its 
groupings and the electron transportation in its surface next to Fermi energy. 
observed the creation of states “in loco” which define the insulator or the metallic 
behavior of crystalline and quasicrystalline materials. 

The presence of centers of dispersions influences the grouping movement of the free 
movement is observed when they are submitted to fields of temperatures 

are created in thermal treatment. Hence, the net vibrations and defects are created at 
quantum level spreading the electrons in the quasicrystalline net. 

illustrates two types of situations for weak electric field of ionic nature for 

Illustration of two types of situations of weak electrical field of ionic nature for 
quasiperiodic structure (a) small dispersion center in the net and (b) concentrated dispersion 

center in the net. 

centers of dispersion are few and do not influence the 
3(b), it is observed an increase of the concentration of dispersion 

trajectory of electron in the presence of external changes 
origin. As a result of the increase in concentration of dispersion, closed trajectories of 
electrons in Fermi surface in quasicrystals are observed. Therefore, it was
states with finite states densities limiting the wave function in an overposition in the structure 
rotations. In this figure the collisions do not influence significantly the movement of electrons 
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Fermi surface is spherical and has density of states given by each direction of 
spin of the system structure due to the approximation of the free electron in the quasiperiodic 

                                    (7) 

are considered ideal. 
dispersion introduce a kind of 

it can be seen as free medium way such 

with the centers of dispersion are analyzed. 
Furthermore, it is observed that these interactions modify the quasicrystal structure, its 
groupings and the electron transportation in its surface next to Fermi energy. It is also 

ulator or the metallic 

The presence of centers of dispersions influences the grouping movement of the free 
movement is observed when they are submitted to fields of temperatures 

and defects are created at 

illustrates two types of situations for weak electric field of ionic nature for 

 

Illustration of two types of situations of weak electrical field of ionic nature for 
quasiperiodic structure (a) small dispersion center in the net and (b) concentrated dispersion 

centers of dispersion are few and do not influence the trajectory of 
it is observed an increase of the concentration of dispersion 

in the presence of external changes of ionic 
closed trajectories of 
was created localized 

in an overposition in the structure 
rotations. In this figure the collisions do not influence significantly the movement of electrons 
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in the quasiperiodic net. Due to this behavior, it is not observed any deviation from its 
trajectory when in movement influenced by temperature or by external electric field. 

The model analyzes this case as a diffusion of classic particles around the grouping of 
quasicrystal and applies the Boltzmann equation giving by: 

2 2. . . .

F

n e e n D

m E

τ
σ = =                                                                                              (8) 

where, σ is the classical diffusion coefficient, n is the concentration of the population of 
particles (electrons), τ  is the time of medium free way, m is the effective mass of grouping in 
quasicrystal and EF is the Fermi energy in the surface “e”. 

The diffusion coefficient D is defined as follows: 

.
F

D E L=                                                                                                                (9) 

where, VF is the velocity of Fermi surface and L is the free medium way. 

The diffusion process may create gaps due to Fermi energy or even pseudogaps due to density 
of states. Thus it is created a cohesive energy that justifies the mechanism of grouping in 
quasicrystals with its stability in quasiperiodic net [12]. When L is small and kL > 1, the 
changes in density of states are not big. Considering that quasicrystalline materials are 
amorphous, the disorder of electrons dispersion is responsible for its free medium way. The 
origin of quantum interferences of the wave functions for these materials is a good pioneer in 
chemical liaisons and in the quasicrystalline arrangements. 

4. CONCLUSIONS 

Grouping Model describes the behavior of groupings in quasicrystalline structures as well we 
the breakage of symmetry due to factors such as temperature, electric field and electric 
dispersion in the net. The latter explains the diffusion process of electrons on Fermi surface 
by the density of states of free electrons via Fermi Statistics. 

The Boltzmann transport influences the temperature and resistivity propagation as, for 
example, the conduction of electrons in the quasicrystalline structure in the league formation 
process. 

The long thermal treatment shows a tendency for creating significant vacancies. It is 
understood that there is no diminish in the surface defects but a material sinterization with 
non adequate thermal treatment. This creates quantum interferences in the centers of 
dispersions originating gaps and pseudogaps of energy next to Fermi surface. 
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