Clinical practice guidelines for the surgical endodontic management of post-treatment periapical disease

Guía de práctica clínica para el manejo quirúrgico en endodoncia de la enfermedad periapical postratamiento

LINA MARÍA GARCÍA SERRANO*, DIANA CAROLINA LARA RODRÍGUEZ*, CLAUDIA C. GARCÍA GUERRERO*

1 The development of these guidelines was sponsored by a couple of local fellowships: “Convocatoria estímulo a la investigación de los Facultades de Odontología y Medicina Oral, Universidad Nacional de Colombia, Bogotá DC. Date: First semester of 2016, and “Convocatoria nacional de proyectos para el fortalecimiento de la investigación en odontología”.
2 DDS, Endodontics Specialist, Grupo de investigación INVENDO, Facultad de Odontología, Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá DC. Email: dianalara86@hotmail.com, linmari@hotmail.com
3 DDS, Endodontics Specialist, MSc in Dentistry, Grupo de investigación INVENDO, Facultad de Odontología, Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá DC. Email: cccgarcia@unal.edu.co

ABSTRACT

Introduction: in Colombia, persisting post-endodontic disease has been reported by up to 45%, validating the use of secondary alternative therapies, like endodontic microsurgery (EM). The aim of this study was to systematically—and with reliable scientific evidence—develop de Novo Clinical Practice Guidelines for the surgical endodontic management of post-treatment periapical disease (PPD), with more accurate recommendations for therapeutic decisions and preferences consulted with both practitioners and patients. Method: the guidelines developers team identified EM as a topic in the literature and established the scope, objective, questions, and outcomes, which were analyzed using the scientific evidence reported in secondary or primary clinical studies. A first screening identified titles and abstracts for each question asked. The validity of the selected studies was quantified with tools like AMSTAR or SIGN. Finally, the strength of recommendations and the quality of evidence were confirmed with GRADE. Results: concepts like PPD, EM indication, use of local anesthetics, antibiotics and presurgical anti-inflammatory drugs, effect of magnification, implementation of cone beam computed tomography, hemostasis, retrograde filling, and control time were integrated, supporting each topic with relevant evidence, experts’ recommendations, and even good practice points. Conclusions: this document is considered a tool with sufficient evidence for clinical decision-making in EM.

Keywords: apicectomy, endodontics, clinical practice guidelines as subject, evidence-based dentistry, periapical periodontitis, periapical tissue

RESUMEN

Introducción: en Colombia, la persistencia de enfermedad posendodoncia ha sido reportada hasta en un 45%, lo cual justifica propuestas terapéuticas secundarias, como la microcirugía endodónica (ME). El objetivo del presente estudio consistió en desarrollar sistemáticamente y con evidencia científica confiable, un Guía de Práctica Clínica de Novo para el manejo quirúrgico en endodoncia de la enfermedad periapical postratamiento (EPP), con las recomendaciones más acertadas frente a decisiones y preferencias terapéuticas consultadas a profesionales y pacientes. M todo: el grupo desarrollador de la guía identificó la EPP como un tema en la literatura y estableció el alcance, el objetivo, las preguntas y los desenlaces, analizados mediante la evidencia científica registrada a partir de estudios clínicos secundarios o primarios. Un primer tamizaje identificó títulos y resúmenes para cada pregunta formulada. La validez de los estudios seleccionados se cuantificó con las herramientas AMSTAR o SIGN. Finalmente, la fuerza de las recomendaciones y la calidad de la evidencia se constataron con la herramienta GRADE. Resultados: se identificaron los conceptos de EPP, indicación de la ME, uso de anestésicos locales, antibióticos y presurgencia anti-inflamatorios, efecto de la magnificación, implementación de tomografía computarizada de haz cónico, hemostasia, rellenado retrogrado, y control del tiempo de manejo, con la finalidad de integrar cada tema con la evidencia más relevante, recomendaciones de los expertos y en ocasiones con las premisas de las buenas prácticas. Conclusiones: el presente documento se considera una herramienta con suficiente evidencia para la toma de decisiones clínicas en ME.

Submitted: December 3/2017 - Accepted: March 19/2019

INTRODUCTION

Post-treatment periapical disease (PPD) is defined as the onset or persistence of periapical pathology once an endodontic treatment has been completed.\(^1\) According to the literature, endodontic failure occurs in 38% of all cases on average,\(^2\) requiring a secondary endodontic intervention. In this situation, there are two therapeutic alternatives: orthograde retreatment or endodontic microsurgery (EM)—indicated as a surgical alternative when retreatment fails or cannot be performed—.\(^3\) With a success rate ranging from 78 to 92%, EM can access periapical tissue with magnification, illumination, ultrasonic instruments, and regenerative retrograde filling materials.\(^4,5\)

In Colombia, the mandatory health insurance plan (plan obligatorio de salud, POS), under Resolution 5857 of 2018,\(^6\) states that specialized dentistry includes “the excision procedure on an odontogenic lesion [...] and other corrective endodontic procedures”, as a practice subjected to agreements by Health Maintenance Organizations (HMOs) (entidades prestadoras de salud, EPS).\(^6\) In order to promote a controlled practice, the Ministry of Health and Social Protection states that “All induced and mandatory activities, procedures, and interventions must design or adopt technical standards and healthcare guidelines for relevant diseases”,\(^7\) a statement that validates the development of Clinical Practice Guidelines (CPGs), defined as evidence-based documents aimed at establishing the most appropriate health care procedures when dealing with a clinical condition.\(^7,8\)

Evans et al (2012)\(^9\) published some EM standards, but methodologically speaking the document cannot be considered a CPG to be adapted nationwide, and therefore a de novo\(^10,11\) CPG needs to be developed for the surgical endodontic management of PPD (CPGEM).

That being said, in recognizing the prevalence of PPD\(^2\) and understanding the preservation of natural teeth as the main objective of dental specialties, the purpose of this study was to make evidence-based recommendations to support the practice and quality of EM as an effective treatment of PPD.

The final CPGEM document will be a product with an impact on dental schools, endodontics programs, practitioners, endodontic service providers, and especially on patients consulting health care reference centers for EM therapy because of PPD.

METHODS

The development of this document was approved by the Universidad Nacional de Colombia Ethics Committee (Minutes 20-15). The Guidelines Developing Group (GDG) was formed with an endodontist and two graduate students leading the projects within the Graduate Endodontics Program at the School of Dentistry (Posgrado de Endodoncia de la Facultad de Odontología Universidad Nacional de Colombia, PEOFON). The stages for the development of the document are shown in Figure 1, including the selection of “Microsurgical treatment of PPD” as subject, and the formulation of objective, scope, and 11 questions in either PICO (Patients-Intervention-Comparison-Outcome) or PECOT (Population-Exposure-Comparison-Outcome-Time).\(^11\)
The methodology complied with the principles of clinical validity and reliability through a multidisciplinary review of each question and dissemination for correction and re-formulation by endodontic experts who served as consultants in CPG methodology\(^{10,11}\) and two PPD patients in need of EM seen at PEFOUN.

OUTCOME CATEGORIES

In accordance with the Grading of Recommendations Assessment, Development and Evaluation (GRADE),\(^{12}\) each question’s expected impact was quantified by identifying the outcomes, like this: 1. “critical”, for anesthetic effect, pain control, infection control, hemostatic effect, and treatment success or failure. 2. “significant but not critical”, for reduction of healing time.

The GDG conducted a systematic search of literature in the period October 2015-October 2017 in the following databases: Science Direct, Medline via PubMed, Embase via OVID, Lilacs, SciELO via Bireme, Trip Database, as well as in the tables of content of endodontic journals. The search sought highly sensible answers to the questions asked, selecting secondary studies first, like meta-analysis (MA) and systematic literature reviews (SLR) and then primary clinical studies, like randomized controlled clinical trials (RCT), cohorts, and case controls, all with EM as subject.\(^6\)
A search equation was explored for each question, and a first screening by title identified the abstracts to be evaluated. Differences between evaluators were resolved by a third evaluator, finally selecting the articles that were read in full text. For each selected publication, validity was determined according to methodological standards and relevance for answering the questions. Tools like Measurement Tool to Assess Systematic Reviews (AMSTAR)13 for SLR and MA, and The Scottish Intercollegiate Guidelines Network (SIGN)14 for clinical studies helped qualify the validity of each study. Finally, GRADE was used to rate the quality of the evidence and the strength of the recommendations, as high, moderate, low, or very low.12

On October 26, 2016, a consensus meeting with endodontic experts, professors, and members of scientific organizations disseminated the document and submitted it for external evaluation, generating recommendations for the established outcomes. In the absence of scientific evidence for certain topics, good clinical practice points were considered when the desirable effects outweighed the undesirable effects, as “clinical common sense”.11

RESULTS

<table>
<thead>
<tr>
<th>QUESTION 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the main clinical and radiographic signs and symptoms of PPD?</td>
</tr>
</tbody>
</table>

THEORETICAL SUMMARY: PPD is defined as a persistent, recurrent or emerging periapical pathology that is unresolved once a prior endodontic treatment has been completed.15

<table>
<thead>
<tr>
<th>PRO</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONGLY PRO 1</td>
<td>The term persistent periapical radiopacity following endodontic treatment refers to teeth showing no radiographic signs of bone healing, which could be evaluated for periods of 4 to 5 years in the absence of clinical symptomatology.16,17 SIGN 4</td>
</tr>
<tr>
<td>STRONGLY PRO 2</td>
<td>Failure of an endodontic treatment is associated with: Presence of spontaneous or produced pain when chewing, intra and/or extraoral inflammation, fistula.18 A positive response to the percussion, palpation or mobility test. The periapical area radiographic or tomographic correlation to clinical findings helps identify endodontic treatment failure.19 SIGN 4</td>
</tr>
<tr>
<td>STRONGLY PRO 3</td>
<td>To confirm PPD, the presence of at least two clinical/radiographic or tomographic signs or symptoms becomes necessary.16,20–27 SIGN 4</td>
</tr>
<tr>
<td>STRONGLY PRO 4</td>
<td>Signs like tooth mobility and periodontal pocket depth are quantifiable. The response to percussion, palpation and bite test is dependent on each patient’s individual response. However, from an endodontic diagnosis point of view, these tests provide relevant information, including evidence of changes in supporting tissue.21,22 SIGN 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUESTION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>In teeth with a clinical diagnosis of PPD, how to consider the exclusive practice of EM as the indicated treatment?</td>
</tr>
</tbody>
</table>

THEORETICAL SUMMARY: Apical surgery appears as an alternative when endodontic retreatment is unfavorable or not possible.3

<table>
<thead>
<tr>
<th>PRO</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEAKLY PRO 5</td>
<td>According to the histopathological condition of periapical tissue. A 10% prevalence of closed cysts validates the surgical approach, in addition to the conditions of orthograde treatment.28–30 SIGN 4</td>
</tr>
<tr>
<td>Good practice point</td>
<td>✔ Histopathological analyses of the removed tissue during EM is recommended.</td>
</tr>
</tbody>
</table>
Clinical practice guidelines for the surgical endodontic management of post-treatment periapical disease

According to the presence of intraoperative errors in the apical third.
The presence of errors in biomechanical preparation in 19-66% blocks orthograde access to the apical third, requiring a surgical approach.31,32 SIGN 4

From an anatomical point of view.
The complexity of the root canal anatomy sometimes prevents the access to the apical third.4,33,34 SIGN 4

From a restorative point of view.
Presence of definitive restorations blocking the direct access to the root canal. The clinician should make a cost-benefit analysis for the therapeutic alternative of periapical disease control. Repetition of cast post restorations and removal of intraradicular retainers can cause additional irreversible damage to the remaining dental structure.4,35 SIGN 4

QUESTION 3A
In ASA I and II patients with EM indication, what is the anesthetic effect obtained when two different anesthetic solutions (4% articaine or 2% lidocaine) are used?

THEORETICAL SUMMARY: In endodontic surgery, local anesthesia has two different purposes: anesthesia and hemostasis.4

STRONGLY PRO 9 The use of 4% articaine is recommended as reinforcement in the surgical area. A greater anesthetic effect favors the surgical act.36 Quality of evidence: Moderate ⊕⊕⊕⊕

QUESTION 3B
In ASA I and II patients with EM indication, what is the hemostatic effect obtained with an anesthetic solution when the vasoconstrictor concentration is changed?

RECOMMENDATION

STRONGLY PRO 10 The use of high concentrations of vasoconstrictor is recommended in ASA I and ASA II patients. The vasoconstrictor concentration decreases blood flow, improving hemostasis conditions during surgery (predictable treatment).4 Quality of evidence: High ⊕⊕⊕⊕

QUESTION 4
In patients with EM indication, how does the source and intensity of light and magnification used in an EM procedure influence the outcome (in terms of success or failure) of the procedure?

THEORETICAL SUMMARY: The implementation of magnification and light sources facilitates precision and detection of anatomical and pathological changes in accessing periapical tissue. This improves access and procedure conditions.3,34,37-41

STRONGLY PRO 11 The use of a microscope in EM has reported a success rate of 93.3% at 4 years of follow-up.3,42,43 Quality of evidence: Moderate ⊕⊕⊕⊕

STRONGLY PRO 12 The use of surgical magnifiers in EM has reported a success rate of 90%.42 Quality of evidence: Moderate ⊕⊕⊕⊕

WEAKLY PRO 13 The use of an endoscope is suggested as it improves the identification of microstructures and allows greater accuracy during retropreparation and filling.42,43 Quality of evidence: Moderate ⊕⊕⊕⊕

IDENTIFICATION OF BARRIERS: In Colombia, endoscopes are not available for EM.

QUESTION 5
What intraoperative and postoperative benefits in terms of hemostasis/non-hemostasis occur during the EM surgical procedure, in relation to the use of hemostatic agents?

THEORETICAL SUMMARY: Bleeding control facilitates aspects like visibility, field inspection, observation of anatomical structures and precision in retropreparation and apical sealing, promoting shorter operating time, less post-surgical complications, and clinical success prediction.44,45

WEAKLY PRO 14 The use of calcium sulfate and collagen sponges plus epinephrine is suggested, as they have a bleeding control effectiveness of 100% and 92.9% respectively.44,45 Quality of evidence: Low ⊕⊕⊕⊕

Good practice point ✔ The use of vasoconstrictor-impregnated cotton pellets is recommended, as it reduces costs.
STRONGLY AGAINST 15 The use of aluminum chloride for hemostasis control in apical surgery is not recommended, as reactions to external bodies may occur if certain precautions are not taken during removal.46,47 Quality of evidence: Moderate ⊕⊕⊕⊝

IDENTIFICATION OF BARRIERS: In Colombia, the use of laser is still limited. To date, not enough evidence is reported1 to indicate the use of laser therapies in EM.

QUESTION 6

If Aggregate Mineral Trioxide (MTA®) is considered as the gold standard retrograde filling material in EM, what effect would the use of intermediate restorative material (IRM®), Super EBA, Biodentine (Septodont, Saint Maur des-Fossés, France) have on the outcome of the EM (in terms of success or failure)?

THEORETICAL SUMMARY: A retrograde filling material must have dimensional stability, adequate adhesion to the canal walls, moisture strength, and biological stability, and it should promote the healing of periapical tissues.41 A proper and durable apical seal is required for apical repair in EM.4,5

STRONGLY PRO 16 The use of MTA or Super EBA cement is recommended, as they have shown success rates of 91.6% and 89.9% respectively to 4-year follow-up, with no statistically significant difference between them.48 Quality of evidence: High ⊕⊕⊕⊕

STRONGLY PRO 17 The exclusive use of MTA is recommended for retrograde filling as it has a 1-year success rate of 91.4%, compared to Super EBA (69.8%) and IRM (71.6%).44 Quality of evidence: Moderate ⊕⊕⊕⊕

STRONGLY PRO 18 There is no statistically significant difference in post-EM periapical healing in a 1-year follow-up, with success rates of 93.1% for MTA and 94.4% for bioceramic (iRoot BP Plus Root Repair).49 Quality of evidence: High ⊕⊕⊕⊕

STRONGLY PRO 19 The use of EndoSequence BC bioceramic cement in retrograde filling reports a healing rate of 92.0%.50 Quality of evidence: Low ⊕⊕⊝⊝

IDENTIFICATION OF BARRIERS: In Colombia, retrograde filling cements (Super EBA and EndoSequence BC) are not easily available. Biodentine is currently available*.

QUESTION 7

How do the use of regeneration techniques and membrane/bone grafts provide better healing, in terms of reduced time and EM success?

THEORETICAL SUMMARY: Regeneration is defined as the reproduction or reconstruction of lost tissue and the restoration of various functions of damaged human tissues and organs.51 In endodontics, regeneration in EM is used to accelerate apical healing or in large-scale bone defects that compromise the integrity of corticals.52 Regenerative procedures in periapical surgery generally include membrane barriers, analogous bone replacement, signaling molecules or growth factors, which to some extent promote the growth of surrounding tissue and accelerate the process of tissue healing.53

STRONGLY AGAINST 20 In general, the use of guided tissue regeneration (GTR) is not recommended in patients undergoing EM.54,55 Quality of evidence: Moderate ⊕⊕⊕⊝

Good practice point ✓ Guided tissue regeneration is not recommended in smaller lesions as there is no difference in clinical outcomes, but costs do increase with GTR.

STRONGLY AGAINST 21 Guided tissue regeneration is not recommended in patients undergoing EM when they have defects involving the four sides.54,55 Quality of evidence: Moderate ⊕⊕⊕⊝

QUESTION 8

Does the use of presurgical antibiotic medication have an effect on infection control and post-surgical complications in ASA I and II patients?

THEORETICAL SUMMARY: The pre- or postoperative use of antibiotics is a regular step in the planning of endodontic surgery. An assessment of antibiotic administration among members of the American Association of Endodontists (AAE) showed that 37% of endodontists routinely prescribe antibiotics for endodontic surgeries. However, the use of antibiotics for the prevention of postoperative infections is controversial.56

STRONGLY AGAINST 24 The use of presurgical antibiotic medication in patients with EM indication is not suggested, as there is no evidence of statistically significant differences in healing rates.54,56 Quality of evidence: Moderate ⊕⊕⊕⊝
DISCUSSION

The construction of these CPGEM aimed to establish agreed, evidence-based behaviors in controversial topics that have a direct influence on the clinical outcome of EM as an alternative treatment of PPD.

There was unanimous consensus in the identification of PPD, with categories like pathological process, occurrence of intraoperative accidents, anatomical conditions, and existing restorations indicating the practice of EM generally accepted and clarified by experts and interns, all of whom understood the recommendations (questions 1 and 2).

As for the implementation of different anesthetic solutions (question 3), the
Clinical practice guidelines for the surgical endodontic management of post-treatment periapical disease

Evidence exclusively focuses on either inferior dental nerve block in symptomatic pulp pain or extraction of third molars. This shows the lack of evidence for anesthetic options in EM.

The use of magnification systems, ultrasound technology, and regenerative retrograde filling materials is common in EM; however, access to such technologies is limited in the country (questions 4 and 6). The legalization of bioceramics in Colombia overcomes opportunity barriers in terms of use, dissemination and future production of knowledge to support the evidence.

As an intraoperative factor, bleeding control (question 5) is a fundamental step for EM success; however, the evidence is not conclusive or innovative. The exploration of new alternatives like laser beam or natural polysaccharides is not yet demonstrated by the available experience due to the limited access to these techniques or because of the little existing evidence.

The consensus, based on existing literature and experience, does not recommend using regenerative techniques in EM, as it increases costs and unnecessarily triggers periapical bone repair (question 7). As an additional contribution, the discussion also included the influence of the pre-surgical state of supporting tissue as a risk factor to EM failure.

On the other hand, the pre-surgical use of analgesics and antibiotics does not establish an effect on the outcome. The American Endodontic Association highlights the indiscriminate use and lack of clarity in criteria. The consensus unanimously decided against presurgical medication (questions 8 and 9) in systemically stable patients.

Finally, the recommendation of pre-surgical CBCT imaging, as a predictor of success in EM, was considered a “good practice point”. Even though the evidence in this regard is still low, the sensitivity and information offered by a prior three-dimensional image was considered a step in the good direction before the surgical approach. In addition, the existence of time-dependent factors indicates the need to evaluate EM at periods longer than one year.

CONCLUSIONS

Carried out by a multidisciplinary team, the CPGEM can be considered a supporting reference tool for general dentists, endodontists, and patients in need of therapeutic decisions for PPD. It includes recommendations, good practice points, and healthcare barriers as a support to university units and reference centers promoting the practice of EM. The CPGEM contributes sufficient evidence on issues affecting decision-making, case selection and quality of procedure.

RECOMMENDATIONS

The authors suggest implementing and adhering to the recommendations of these indicators that support the practice of EM. Future projects should focus on validating the impact of the implementation of the CPGEM on qualified healthcare facilities.

ACKNOWLEDGEMENTS

The construction of the clinical questions in this document was possible thanks to
Clinical practice guidelines for the surgical endodontic management of post-treatment periapical disease

Jos Manuel González Carreño, Javier Niño Barrera, Julio C sar Avenda o Rueda, Sara Quijano Guauque, and Freddy Jord n Mari o; methodological advisors Dairo Javier Mar n Zuluaga, Mar a Claudia Naranjo, and Mauricio Rodr guez, from the group of PEFOUN interns in the period 2016-2017, and patients Daniel Carrillo and Sandra Acu a, who benefitted from the surgical management of post-treatment periapical disease.

Finally, for the construction of the recommendations, the CPGEM was disseminated among coordinators, professors and interns in the Endodontic Graduate Programs of the following universities: del Valle, de Antioquia, del Bosque, Javeriana de Bogot, Nacional and Fundacion CIEO.

CONFLICTS OF INTEREST

The authors state that they have no conflict of interest.

CORRESPONDING AUTHOR

Claudia Carmi a Garc a Guerrero Universidad Nacional de Colombia (+57) 1 316 5000 Ext 16018 ccgarcia@unal.edu.co Carrera 30 #45-03 Edificio 210 Bogot , Colombia

REFERENCES

