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Abstract

Background: Genetic association studies have been increasingly used in cattle breeding programs. 
However, inconsistent results -such as positive, negative, or absence of association- across studies restrain 
reproducibility and proper implementation, propitiating the occurrence of bias. Objective: To identify and 
classify potential sources of bias and determine possible strategies to avoid it in genetic association studies 
in cattle. Source of bias in genetic association studies: Genetic and genomic sources of bias include effects 
associated with the gene loci governing expression. Sampling-related and statistical biases are related with 
factors such as stratification and database size. Strategies to correct bias in genetic association studies: 
Correction strategies differ in nature. Genetic and genomic strategies are based on determining the appropriate 
approach to obtain and report the genetic information. Sampling-related and statistical strategies are based on 
grouping individuals with certain traits that lead to a reduction in heterogeneity. Conclusion: It is necessary 
to consider the methodology used in previous studies to establish a hierarchy of sources of bias and facilitate 
decisions on the use of tools to reduce inconsistencies in the results of future studies.

Keywords: association estimates, genetic bias, genetic improvement, sampling-related bias, statistical bias.

Resumen

Antecedentes: Los estudios de asociación genética son cada vez más usados en los programas de 
mejoramiento genético. Sin embargo, resultados inconsistentes de los estudios -como positivos, negativos o 
ausencia de asociación- restringen la reproducibilidad y su aplicación adecuada, propiciando la aparición de 
sesgos. Objetivo: Identificar y clasificar las fuentes potenciales de sesgo y determinar posibles estrategias para 
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evitarlo en estudios de asociación genética en ganado. Fuentes de sesgo en estudios de asociación genética: 
Las fuentes genéticas y genómicas de sesgo incluyen los efectos asociados con la expresión que gobierna los 
loci. Los sesgos estadísticos y de muestreo están relacionados con factores como la estratificación y el tamaño 
de la base de datos. Estrategias para corregir sesgos en estudios de asociación genética: Las estrategias 
de corrección difieren en naturaleza. Las estrategias genéticas y genómicas se basan en determinar el enfoque 
apropiado para obtener la información genética. Las estrategias estadísticas y relacionadas con el muestreo se 
basan en la agrupación de individuos con ciertos rasgos que conducen a una reducción de la heterogeneidad. 
Conclusión. Se deben considerar las metodologías utilizadas en estudios previos para jerarquizar las fuentes de 
sesgo y facilitar las decisiones sobre el uso de herramientas para reducir inconsistencias en resultados futuros.

Palabras clave: estimados de asociación, mejoramiento genético, sesgo de muestreo, sesgo estadístico, 
sesgo genético.

Resumo

Antecedentes: Nos programas de criação de bovinos, os estudos de associação genética têm sido cada vez 
mais utilizados. No entanto, resultados inconsistentes, como positivos, negativos ou ausência de associação 
entre os estudos, restringem a reprodutibilidade e sua adequada implementação, propiciando o aparecimento de 
viés. Objetivo: Identificar e classificar potenciais fontes de viés e determinar estratégias possíveis para evitá-lo 
nos estudos de associação genética em bovinos. Fonte de viés em estudos de associação genética: Fontes 
genéticas e genômicas do viés incluem os efeitos associados aos genes que relacionam a expressão. Os vícios 
estatísticos e de amostragem estão relacionados a fatores como a estratificação e o tamanho do banco de dados. 
Estratégias para corrigir os viéses nos estudos de associação genética: As estratégias de correção diferem 
na natureza. As estratégias genéticas e genômicas são baseadas na determinação da abordagem apropriada para 
obter e relatar a informação genética. As estratégias estatísticas e de amostragem baseiam-se no agrupamento 
de indivíduos com certos traços que levam a uma redução na heterogeneidade. Conclusão: É necessário 
considerar a metodologia utilizada em estudos anteriores para estabelecer uma hierarquia de fontes de viés e 
facilitar decisões sobre o uso de ferramentas para reduzir inconsistências nos resultados de estudos futuros.

Palavras-chave: estimativas de associação, melhoria genética, viés de amostragem, viés estatístico, viés genético.

Introduction

Genetics association studies (GAS) aim to 
detect associations between one or more genetic 
polymorphism and a quantitative or discrete trait by 
testing for a correlation between a specific trait and a 
genetic variation (Lewis and Knight, 2012). The number 
of genetic association studies have increased, and their 
assessment has become a powerful approach to identify 
common and rare variants underlying complex diseases 
(Wu et al., 2012), discovering causative mutations 
(Schwarzenbacher et al., 2016), or identification of 
quantitative trait loci (QTLs; Jahuey et al., 2016) on a 
population. Nevertheless, inconsistencies in GAS due 
to the combination of factors contribute to spurious or 
not consistently results (Table 1). 

The inconsistencies found in GAS suggest that 
many original results could be false-positive (type I 
errors), especially in studies with systematic differences 
between sample and population, affecting their 
representativeness (Shringarpure and Xing, 2014). Thus, 

factors like paternity misidentification, stratification, and 
population structure are crucial in establishing sample 
size and its representativeness (Pyo and Wan, 2012).  
Other important source of inconsistencies in GAS are 
undetectable small genetic effects (false-negative, type 
II errors) (Lee, 2015). In this regard, poor design quality 
of the database usually means high p-values and low 
recognition of genetic associations (Ioannidis, 2005), 
especially when genotypes have low frequencies in the 
population or the study deals with low heritability traits 
(Satkoski et al., 2011).

Table 1. Results of genetic association studies between CSN3 
gene with milk yield in dairy cattle.

Study
Gustavsson 
et al. (2014)

Duifhuis-
Rivera et al. 

(2014)

Deb et al. 
(2014)

Sampled animals 400 202 200

Reported effect Positive Absence Positive

Best genotype* AA N/D AB

*Best genotype: genotype reported with the best performance 
for milk yield; N/D: gen-trait association absent.
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This lack of reproducibility tends to produce genetic 
associations of no value for genetic improvement. 
Ioannidis (2005) defined bias as the combination 
of design, data, analysis, and presentation factors 
resulting in findings that otherwise should not be 
produced. However, most reviews on bias in GAS 
have focused in the analysis of the genetic factors 
or address other factors as part of the genetic issues. 

Bovine breed(s) considered in the study has 
been addressed as a genetic source of bias due to 
intra- and inter-racial diversity in genetic population 
(Lenstra et al., 2014), especially in the presence 
of crossbred animals (Dickerson, 1993). Besides, 
contemporary group factor has been confounded 
with the pure environment effect as it affects results 
due to the influence of interaction between genotype 
and environment (Ramírez-Valverde et al., 2008). 
Additionally, genomic factors of bias are associated 
with the gene loci governing expression, and are 
confused with environmental or residual variance 
(Burgueño et al., 2012), especially if those factors 
have an epigenetic nature such as genomic imprinting 
(Manolio et al., 2009), or influences more than one 
marker like the linkage disequilibrium, pleiotropy or 
polygenic effect (Pereira et al., 2016).

Lastly, even when the statistical model used in 
GAS is not usually confounded or assessed as a 
genetic factor of bias, its importance as a possible 
source of bias is remarkable since there are models 
that can work with just few markers at the same 
time (Pärna et al., 2012) and methods to determine 
the associations of thousands of markers at once. 
The variability resulting from the use of so different 
assessment methods could then be confounded 
with genetic or sampling factors of bias. Thus, it 
is necessary to classify bias in GAS according to 
its nature to better understand and reduce possible 
spurious results. Therefore, the objective of this study 
was to identify and classify potential sources of bias 
and determine possible strategies to avoid it in genetic 
association studies.

Sources of bias in genetic association studies

Different approaches, based on related or non-
related individuals, have been used to carry out GAS 

(Table 2). The literature reports that some widely cited 
associations cannot be replicated due to inaccuracies 
in the approaches used to determine them (Sagoo et 
al., 2009). In this sense, inconsistencies in GAS could 
be attributable to factors such as genetic, genomic, 
sampling-related, or statistical, which influence 
production traits, and contribute to the risk of false-
positive results (Pärna et al., 2012)

Genetic factors

The breed(s) used in the study could be a source 
of bias due to intra- and inter-racial bovine genetic 
population diversity (Figure 1). Besides, the presence 
of crossbred populations confers changes in the 
behavior of offspring, relative to that of the parents. 
Modifications can be evaluated by direct, maternal 
effects and heterosis of breeds and their crosses, with 
enough precision to predict the expected behavior 
of several breeding alternatives and mating systems 
(Dickerson, 1993). On this regard, Trail et al. (1984) 
reported direct and maternal effects on economic 
production traits in crossbred Boran cattle showing 
differences due to paternal or maternal breed.

Contemporary group (CG) is another genetic 
factor of bias, affecting results by the influence 
between genotype and environment interaction. 
Contemporary group as a fixed effect reduces bias 
in genetic comparisons, while the variance of the 
prediction error is reduced when CG is considered 
random (Ramírez-Valverde et al., 2008).

Genomic factors

Genomic factors of bias are associated with the 
gene loci governing expression and are confused with 
environmental or residual variance (Burgueño et al., 
2012). Genomic imprinting bias in GAS is related 
with production traits due to their nature as epigenetic 
factors (Manolio et al., 2009). Han et al. (2013) 
mentioned that maternal effects could be confused 
with genomic imprinting because they produce 
the same parent-of-origin patterns of phenotypic 
variation, leading to an over- or underestimation 
in GAS of traits that include maternal effects. Su 
et al. (2012) reported a 3.5% bias decrease in genetic 
association values when additive, dominance, and 
epistatic effects are included in the analysis model 
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Table 2. Former and current approaches used in genetic association studies.

Approach Advantages Disadvantages

Fa
m

ily
 

B
as

ed TDT1

FB-GWAS2
Quality control; robustness to population stratification; 

ability to perform genotyping quality control

Less power than pop-based GWAS; 
computationally demanding; not practical for late-

onset diseases

Po
pu

la
tio

n 
ba

se
d

Candidate 
polymorphism
&
Candidate gene

Determine if a given SNP or set of SNPs influences 
the trait directly; involve multiple SNPs within a single 
gene; capture information of the underlying genetic 

variability

SNPs may not serve as the true trait-causing 
variants; multiple SNPs measurements are 

needed to know a precise location on the genome

Fine mapping
Set out to identify with a high level of precision the 
location of a trait-causing variant; determine the 

position on the genome of the causative mutation High computational needs; specific software 
requirements; need for candidate gene studies to 

validate findings from GWAS
Genome-wide Identify associations between SNPs and a trait; involves 

the characterization of larger number of SNPs

1TDT: transmission disequilibrium test; 2FB-GWAS: family based genome-wide association study (Benyamin et al., 2009; Foulkes, 2009).

compared to models previously reported that only 
included the additive effect. 

The type of markers used in GAS is a potential 
source of bias due to its effect on the analysis power 
to determine the linkage disequilibrium (LD) level 
of the data (Goode and Jarvik, 2005). Additionally, 

Rosenberg et al. (2010) reported mean information 
content (IC) differences between microsatellites and 
biallelic markers across the genome, with a better 
performance from the second one (Figure 2). Moreover, 
according with Kinghorn et al. (2010) correct 
choice of markers could increase the performance of 
quantitative genotyping.

Figure 1. Diversity and distribution of major Bos taurus and Bos indicus haplogroups (taken from Lenstra et al., 2014).
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Figure 2. Information content variability for haplotype level 
in Europeans (taken from Rosenberg et al., 2010).

Monomorphism bias is based on the presence 
of uninformative markers in GAS (De et al., 2014). 
Thus, appearance of possible loss of power related 
with use of inadequate type of marker can occur. 
Another important genomic factor of bias is the 
minor allele frequency (MAF), it shows different 
behavior according to its effect size (Figure 3) and it is 
related with the Hardy-Weinberg proportions (HWP) 
potential bias. Therefore, MAF bias could occur if 
GAS use low density, monomorphic, or incorrect type 
of markers (Eynard et al., 2015). 

Pleiotropic and polygenic effects are other important 
genetic sources of bias due to the influence over 
more than one economic trait in cattle (Figure 4). 

Pleiotropic genes, such as PLAG1, operate like satellite 
regulators of the growth pathway while polygenic 
effect influences the estimation of genetic values. 
Segregation factor potential bias is related with the 
monomorphic and type of marker factors of bias and 
highly influences the linkage disequilibrium (LD) in 
the population (Bush and Moore, 2012). Since, LD 
describes the degree to which an allele of one SNP is 
inherited or correlated with the allele of another SNP 
within a population (De et al., 2014), recombination 
events and type of markers to detect them are critical 
for the development of this factor bias.

Figure 3. Types of MAF according to its effect size (taken 
from Bush and Moore, 2012).

Figure 4. Network of candidate pleiotropic genes for carcass 
traits in Nellore cattle (taken from Pereira et al., 2016).

Genomic factors also include heritability bias, 
which is related with the gap between the phenotypic 
variance explained by GWAS results and those 
estimated by classical heritability. Zaitlen and Kraft 
(2012) mentioned that “missing heritability” could 
be due to presence of rare variants, epistatic and 
gene-environment interactions, or structural variation, 
that are not well captured by current GWAS or their 
analysis methods.

Sampling-related factors

Sample selection is another source of bias. It is 
defined as any systematic difference between the sample 
and the population affecting its representativeness 
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(Shringarpure and Xing, 2014), leading to inaccurate 
estimation of relationships between variables (Figure 5). 
According to Pyo and Wan (2012), a larger sample 
size is required to achieve enough statistical power 
and to improve the ability of prediction. On the other 
hand, small sample size increases false negative rates 
and reduces the reliability of a study. 

Paternity misidentification, stratification, and 
population structure are also factors related to sample 
size and its representativeness. On this regard, 
Visscher et al. (2002) determined a proportional 
selection response decrease of 2 to 3% for each 10% 
of paternity misidentification rate. Additionally, 
Sifuentes-Rincón et al. (2006) reported differences 
of 47% in the genetic values between simulated- 
and uncertain- paternity populations. Similarly, 
stratification bias could lead to spurious association 
that have no value as a tool for genetic improvement. 
In this sense, Zaitlen and Kraft (2012) mentioned that 
stratification bias arises when there is a difference in 
the phenotypic variance between the population.

Statistical factors

Statistical factors of bias are those related with the 
model and the nature of data used. According to Pyo 
and Wang (2012), the observed signal for association 
is considered statistically significant when the p-value 
is lower than a present threshold value (e.g., 0.05) to 
reject a null hypothesis of genetic association. Poor 
design quality of the database usually means high 
p-values and lower recognition of genetic associations 
(Ioannidis, 2005), especially if some of the genotypes 
have low frequency in the population or traits with 
low heritability (Satkoski et al., 2011). 

Odd ratios can be a statistical factor of bias (Figure 
6) when they are wrongly used as a weighted average 
to quantify genetic effects in GAS (Su and Lee, 2016). 
Due to their non-collapsible nature and tendency 
towards being null, a quantitative difference between 
conditional and marginal odd ratios in the absence of 
confounding is a mathematical oddity, not a reflection 
of bias (Groenwold et al., 2011). 

Another factor that could cause bias is collinearity, 
which refers to the non-independence of predictor 
variables, usually in a regression-type analysis 

(Dormann et al., 2013). Yoo et al. (2014) mentioned 
that collinearity inflates the variance of regression 
parameters with a potential misidentification of 
relevant predictors in a statistical model. Dias et al. 
(2011) reported multicollinearity in genetic effects 
related with weaning weight in a Brazilian cattle 
population. They reported 9.8% of bias in the sum 
squared deviations, with variance inflation factors 
of 16 and 5.3 when using least square and ridge 
regression methodologies, respectively. 

The presence of collinearity could lead to 
collider bias (i.e., the reversal paradox), an artificial 
association created between exposures (A and B) 
when a shared outcome (X) is included in the model 
as a covariate (Day et al., 2016). Day et al. (2016) 
identified over 200 spurious GAS, when the shared 
outcome was included as a covariate in the model 
used to analyze the data.

One of the most important sources of bias in GAS 
is the statistical model chosen due to the differences 
within obtained results (Figure 7). The first models 
used in GAS included only fixed effects, causing 
bias when random effects were ignored (Miciński 
et al., 2007). On the other hand, mixed models can 
differentiate between the effects of random error 
and those from systematic error (Pärna et al., 2012). 
In the same way, Maximum likelihood (ML) is 

Figure 5. Sample size used in genetic association studies 
showing type I errors (taken from Ioannidis, 2005).

TRENDS in Molecular Medicine



262 

Rev Colomb Cienc Pecu 2018; 31(4):256-266

Bias in genetic association studies

Figure 6. Forest plot of the effects or recombinant bovine 
somatotropin on the risk ratio of clinical mastitis (taken from 
Dohoo et al., 2003).

another procedure used in GAS with potential of 
bias. Kučerová et al. (2006) determined that ML can 
estimate genetic associations of casein genes and 
reported mean differences in protein concentration 
between 42 and 73% across κ-casein genotypes (AA, 
AB, AE, BB, and BE). However, when estimating a 
higher number of associations (e.g., in genome-wide 
association studies), the power of mixed models and 
ML is reduced. 

Extensive GAS need methods to determine the 
associations of thousands of markers at once. On 
this regard, De los Campos et al. (2009) reported 
Bayesian regression models (BM) able to adjust for 
the effects of thousands of markers simultaneously. 
Tenesa et al. (2003) observed that the differences 
between estimates obtained with ML and BM were 
small (about 5%), and both estimation procedures 
yielded essentially the same results. On the other 
hand, there are non-Bayesian models (NBM) that use 
information of genotyped and non-genotyped animals 
to perform genomic predictions (e.g. single-step 
genomic model) (Ma et al., 2015). However, due to 
its ability to estimate genetic association, even with 
markers lacking information, BM and NBM are under 
the influence of sample size and require a pedigree as 
complete as possible (Sahana et al., 2010).

Figure 7. Probabilities of association obtained with two 
different Bayesian-based methods (taken from Bennewitz et 
al., 2017).

Strategies to correct biases in GAS

The aim of bias correction in GAS methodologies 
focuses on bias reduction, rather than its elimination 
(Pärna et al., 2012). Thus, it is possible to group 
bias correction into genetic-genomic, statistical, and 
methodological strategies.

Genetic-genomic strategies

Strategies of genetic-genomic bias correction 
rest on two aspects: source and conditions of genetic 
information. The source of genetic information 
in GAS refers to the approach used to obtain and 
report genetic information (i.e., single and multi-loci 
genotype or haplotype). Instead of analyzing the 
effects of individual alleles, some researchers estimate 
the effects of haplotypes defined by genes associated 
with the traits under study (Zhou et al., 2013), while 
other authors use multi-loci genotypes for the same 
purpose (Jaiswal et al., 2016). 

The use of haplotypes and multi-loci genotypes 
can reduce bias arising from the way several genes 
are combined, the polygenic effect of the studied 
traits, and the position of the analyzed loci within the 
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genome. However, unlike multi-loci genotypes, it has 
been argued that haplotypes have similar effects on 
different breeds (Andrés et al., 2007). As a result, a 
common approach to analyzing the effects of haplotype 
has been to determine the most likely configuration 
for each and assume that this allocation of haplotypes 
is known without error when subsequent statistical 
analyses are performed. However, precise haplotype 
construction could be difficult, and often leads to 
biased estimates and reduced analytical power in 
GAS (Andrés et al., 2007). In addition, when multiple 
loci are genotyped, haplotypes are unknown because 
there is no information about linkage phase of alleles 
at different loci (Sahana et al., 2010). Sahana et al. 
(2010) observed a high rate of type I error when using 
haplotypes as a fixed effect in genetic association 
models. Zhang et al. (2016) concluded that when there 
is a lack of tools available to reconstruct haplotypes, the 
best alternative is to use multi-loci genotypes regardless 
of whether phase adjustment information is available. 

Other factors affecting the reliability of results are 
the number of markers used for reconstruction and 
the way that haplotypes and multi-loci genotypes 
are included in GAS models. For reconstruction, the 
best results have been obtained using 2 to 5 markers 
(Abdallah et al., 2004). In this sense, the main benefit of 
using haplotypes or multi-loci genotypes is their ability 
to explain most of the additive, dominance, and epistasis 
effects on the loci studied (Zhao et al., 2012). With 
respect to inclusion methods, incorporating haplotype 
as a random effect conveys better performance 
compared with models that include it as a fixed effect 
in terms of power, control of type I error, and precision 
(Boleckova et al., 2012). Hence, some of the probable 
HWP bias in these studies can be avoided, especially 
if the nature of the alleles being studied is considered. 
Kent et al. (2007) concluded that due to the risk of 
wrong associations, it is best to use common genetic 
variants greater than 10% as rare alleles generate biases 
in their association values and equally affect the values 
of common alleles. Therefore, the conditions needed to 
establish the use of haplotypes, genotypes, or both in 
GAS are of utmost importance for devising strategies 
to correct bias of genetic information.

Sampling-related and statistical strategies

Methodological strategies used to avoid sampling 
bias are based on grouping individuals or samples 

that share the same features in order to reduce 
heterogeneity and increase representativeness of 
results (Gustavsson et al., 2014). On the other hand, 
the use of previously reported information becomes 
important when establishing a methodological bias 
reduction strategy. Published information enables 
to use features and results previously validated, and 
helps to avoid the risk of bias related with transferring 
results among breeds (Poulsen et al., 2015).

Methodological strategies to reduce bias associated 
with statistical source are based on reviews, as well 
as the use of estimates and other literature results to 
determine the best models and features for the studied 
phenomenon (Brito et al., 2011). Commonly used 
association methods are based on family structure 
(pedigree) and case-control studies with unrelated 
individuals (De los Campos et al., 2009). However, 
case-control studies are the most viable to study 
genetic association because studies based on family 
structure involve extended testing periods (Kent 
et al., 2007). The presence of type I errors due to 
the subjective nature of the estimates (underlying 
assumptions) could address the risk of under- or 
overestimation of studied traits (Zoche-Golob et al., 
2015). Therefore, the best strategy to reduce statistical 
bias lies in all aspects related to the predictive power 
of the approaches since it depends on all elements of 
bias that might arise. 

In conclusion, it is necessary to consider the 
methodology used in previous GAS to establish a 
hierarchy of sources of bias and to facilitate better 
decisions on the use of tools to reduce inconsistencies 
in the results of future studies.
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