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Abstract

Background: Genetic association studies have been increasingly used in cattle breeding programs.
However, inconsistent results -such as positive, negative, or absence of association- across studies restrain
reproducibility and proper implementation, propitiating the occurrence of bias. Objective: To identify and
classify potential sources of bias and determine possible strategies to avoid it in genetic association studies
in cattle. Source of bias in genetic association studies: Genetic and genomic sources of bias include effects
associated with the gene loci governing expression. Sampling-related and statistical biases are related with
factors such as stratification and database size. Strategies to correct bias in genetic association studies:
Correction strategies differ in nature. Genetic and genomic strategies are based on determining the appropriate
approach to obtain and report the genetic information. Sampling-related and statistical strategies are based on
grouping individuals with certain traits that lead to a reduction in heterogeneity. Conclusion: It is necessary
to consider the methodology used in previous studies to establish a hierarchy of sources of bias and facilitate
decisions on the use of tools to reduce inconsistencies in the results of future studies.

Keywords: association estimates, genetic bias, genetic improvement, sampling-related bias, statistical bias.

Resumen

Antecedentes: Los estudios de asociacion genética son cada vez mas usados en los programas de
mejoramiento genético. Sin embargo, resultados inconsistentes de los estudios -como positivos, negativos o
ausencia de asociacion- restringen la reproducibilidad y su aplicacion adecuada, propiciando la aparicion de
sesgos. Objetivo: Identificar y clasificar las fuentes potenciales de sesgo y determinar posibles estrategias para
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evitarlo en estudios de asociacion genética en ganado. Fuentes de sesgo en estudios de asociacion genética:
Las fuentes genéticas y genomicas de sesgo incluyen los efectos asociados con la expresion que gobierna los
loci. Los sesgos estadisticos y de muestreo estan relacionados con factores como la estratificacion y el tamafio
de la base de datos. Estrategias para corregir sesgos en estudios de asociacion genética: Las estrategias
de correccion difieren en naturaleza. Las estrategias genéticas y gendmicas se basan en determinar el enfoque
apropiado para obtener la informacion genética. Las estrategias estadisticas y relacionadas con el muestreo se
basan en la agrupacion de individuos con ciertos rasgos que conducen a una reduccion de la heterogeneidad.
Conclusion. Se deben considerar las metodologias utilizadas en estudios previos para jerarquizar las fuentes de
sesgo y facilitar las decisiones sobre el uso de herramientas para reducir inconsistencias en resultados futuros.

Palabras clave: estimados de asociacion, mejoramiento genético, sesgo de muestreo, sesgo estadistico,
sesgo genético.

Resumo

Antecedentes: Nos programas de criacdo de bovinos, os estudos de associacdo genética t€ém sido cada vez
mais utilizados. No entanto, resultados inconsistentes, como positivos, negativos ou auséncia de associagao
entre os estudos, restringem a reprodutibilidade e sua adequada implementacao, propiciando o aparecimento de
viés. Objetivo: Identificar e classificar potenciais fontes de viés e determinar estratégias possiveis para evita-lo
nos estudos de associagdo genética em bovinos. Fonte de viés em estudos de associacio genética: Fontes
genéticas e gendmicas do viés incluem os efeitos associados aos genes que relacionam a expressdo. Os vicios
estatisticos e de amostragem estdo relacionados a fatores como a estratificag@o e o tamanho do banco de dados.
Estratégias para corrigir os viéses nos estudos de associaciio genética: As estratégias de corregao diferem
na natureza. As estratégias genéticas e genomicas sdo baseadas na determinagdo da abordagem apropriada para
obter e relatar a informagdo genética. As estratégias estatisticas e de amostragem baseiam-se no agrupamento
de individuos com certos tragos que levam a uma redugdo na heterogeneidade. Conclusdo: E necessério
considerar a metodologia utilizada em estudos anteriores para estabelecer uma hierarquia de fontes de viés e
facilitar decisdes sobre o uso de ferramentas para reduzir inconsisténcias nos resultados de estudos futuros.

Palavras-chave: estimativas de associa¢do, melhoria genética, viés de amostragem, viés estatistico, viés genético.
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Introduction

Genetics association studies (GAS) aim to
detect associations between one or more genetic
polymorphism and a quantitative or discrete trait by
testing for a correlation between a specific trait and a
genetic variation (Lewis and Knight, 2012). The number
of genetic association studies have increased, and their
assessment has become a powerful approach to identify
common and rare variants underlying complex diseases
(Wu et al., 2012), discovering causative mutations
(Schwarzenbacher et al., 2016), or identification of
quantitative trait loci (QTLs; Jahuey ef al., 2016) on a
population. Nevertheless, inconsistencies in GAS due
to the combination of factors contribute to spurious or
not consistently results (Table 1).

The inconsistencies found in GAS suggest that
many original results could be false-positive (type I
errors), especially in studies with systematic differences
between sample and population, affecting their
representativeness (Shringarpure and Xing, 2014). Thus,
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factors like paternity misidentification, stratification, and
population structure are crucial in establishing sample
size and its representativeness (Pyo and Wan, 2012).
Other important source of inconsistencies in GAS are
undetectable small genetic effects (false-negative, type
Il errors) (Lee, 2015). In this regard, poor design quality
of the database usually means high p-values and low
recognition of genetic associations (loannidis, 2005),
especially when genotypes have low frequencies in the
population or the study deals with low heritability traits
(Satkoski et al., 2011).

Table 1. Results of genetic association studies between CSN3
gene with milk yield in dairy cattle.

Study
Gustavsson Duifhuis- Deb et al.
et al. (2014) Rivera et al. (2014)
(2014)
Sampled animals 400 202 200
Reported effect Positive Absence Positive

Best genotype” AA N/D AB

*Best genotype: genotype reported with the best performance
for milk yield; N/D: gen-trait association absent.
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This lack of reproducibility tends to produce genetic
associations of no value for genetic improvement.
loannidis (2005) defined bias as the combination
of design, data, analysis, and presentation factors
resulting in findings that otherwise should not be
produced. However, most reviews on bias in GAS
have focused in the analysis of the genetic factors
or address other factors as part of the genetic issues.

Bovine breed(s) considered in the study has
been addressed as a genetic source of bias due to
intra- and inter-racial diversity in genetic population
(Lenstra et al., 2014), especially in the presence
of crossbred animals (Dickerson, 1993). Besides,
contemporary group factor has been confounded
with the pure environment effect as it affects results
due to the influence of interaction between genotype
and environment (Ramirez-Valverde et al., 2008).
Additionally, genomic factors of bias are associated
with the gene loci governing expression, and are
confused with environmental or residual variance
(Burgueiio et al., 2012), especially if those factors
have an epigenetic nature such as genomic imprinting
(Manolio et al., 2009), or influences more than one
marker like the linkage disequilibrium, pleiotropy or
polygenic effect (Pereira et al., 2016).

Lastly, even when the statistical model used in
GAS is not usually confounded or assessed as a
genetic factor of bias, its importance as a possible
source of bias is remarkable since there are models
that can work with just few markers at the same
time (Parna ef al., 2012) and methods to determine
the associations of thousands of markers at once.
The variability resulting from the use of so different
assessment methods could then be confounded
with genetic or sampling factors of bias. Thus, it
is necessary to classify bias in GAS according to
its nature to better understand and reduce possible
spurious results. Therefore, the objective of this study
was to identify and classify potential sources of bias
and determine possible strategies to avoid it in genetic
association studies.

Sources of bias in genetic association studies

Different approaches, based on related or non-
related individuals, have been used to carry out GAS

(Table 2). The literature reports that some widely cited
associations cannot be replicated due to inaccuracies
in the approaches used to determine them (Sagoo et
al.,2009). In this sense, inconsistencies in GAS could
be attributable to factors such as genetic, genomic,
sampling-related, or statistical, which influence
production traits, and contribute to the risk of false-
positive results (Pérna et al., 2012)

Genetic factors

The breed(s) used in the study could be a source
of bias due to intra- and inter-racial bovine genetic
population diversity (Figure 1). Besides, the presence
of crossbred populations confers changes in the
behavior of offspring, relative to that of the parents.
Modifications can be evaluated by direct, maternal
effects and heterosis of breeds and their crosses, with
enough precision to predict the expected behavior
of several breeding alternatives and mating systems
(Dickerson, 1993). On this regard, Trail ez al. (1984)
reported direct and maternal effects on economic
production traits in crossbred Boran cattle showing
differences due to paternal or maternal breed.

Contemporary group (CG) is another genetic
factor of bias, affecting results by the influence
between genotype and environment interaction.
Contemporary group as a fixed effect reduces bias
in genetic comparisons, while the variance of the
prediction error is reduced when CG is considered
random (Ramirez-Valverde ef al., 2008).

Genomic factors

Genomic factors of bias are associated with the
gene loci governing expression and are confused with
environmental or residual variance (Burgueio et al.,
2012). Genomic imprinting bias in GAS is related
with production traits due to their nature as epigenetic
factors (Manolio et al., 2009). Han et al. (2013)
mentioned that maternal effects could be confused
with genomic imprinting because they produce
the same parent-of-origin patterns of phenotypic
variation, leading to an over- or underestimation
in GAS of traits that include maternal effects. Su
et al. (2012) reported a 3.5% bias decrease in genetic
association values when additive, dominance, and
epistatic effects are included in the analysis model
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Table 2. Former and current approaches used in genetic association studies.
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Disadvantages

Approach Advantages
>
E § DT’ Quality control; robustness to population stratification;
8 o FB-GWAS? ability to perform genotyping quality control
Candidate Determine if a given SNP or set of SNPs influences
polymorphism the trait directly; involve multiple SNPs within a single
§ & gene; capture informatio_n of the underlying genetic
&  Candidate gene variability
c
2 Set out to identify with a high level of precision the
g Fine mapping location of a trait-causing variant; determine the
8‘ position on the genome of the causative mutation
o

Genome-wide

Identify associations between SNPs and a trait; involves
the characterization of larger number of SNPs

Less power than pop-based GWAS;
computationally demanding; not practical for late-
onset diseases

SNPs may not serve as the true trait-causing
variants; multiple SNPs measurements are
needed to know a precise location on the genome

High computational needs; specific software
requirements; need for candidate gene studies to
validate findings from GWAS

TDT: transmission disequilibrium test; 2FB-GWAS: family based genome-wide association study (Benyamin et al., 2009; Foulkes, 2009).

compared to models previously reported that only
included the additive effect.

The type of markers used in GAS is a potential
source of bias due to its effect on the analysis power
to determine the linkage disequilibrium (LD) level

Rosenberg et al. (2010) reported mean information
content (IC) differences between microsatellites and
biallelic markers across the genome, with a better
performance from the second one (Figure 2). Moreover,
according with Kinghorn et al. (2010) correct
choice of markers could increase the performance of
quantitative genotyping.

of the data (Goode and Jarvik, 2005). Additionally,
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Diversity and distribution of major Bos taurus and Bos indicus haplogroups (taken from Lenstra et al., 2014).
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Figure 2. Information content variability for haplotype level
in Europeans (taken from Rosenberg et al., 2010).

Monomorphism bias is based on the presence
of uninformative markers in GAS (De et al., 2014).
Thus, appearance of possible loss of power related
with use of inadequate type of marker can occur.
Another important genomic factor of bias is the
minor allele frequency (MAF), it shows different
behavior according to its effect size (Figure 3) and it is
related with the Hardy-Weinberg proportions (HWP)
potential bias. Therefore, MAF bias could occur if
GAS use low density, monomorphic, or incorrect type
of markers (Eynard et al., 2015).

Pleiotropic and polygenic effects are other important
genetic sources of bias due to the influence over
more than one economic trait in cattle (Figure 4).
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Figure 3. Types of MAF according to its effect size (taken
from Bush and Moore, 2012).

Bias in genetic association studies

Pleiotropic genes, such as PLAG 1, operate like satellite
regulators of the growth pathway while polygenic
effect influences the estimation of genetic values.
Segregation factor potential bias is related with the
monomorphic and type of marker factors of bias and
highly influences the linkage disequilibrium (LD) in
the population (Bush and Moore, 2012). Since, LD
describes the degree to which an allele of one SNP is
inherited or correlated with the allele of another SNP
within a population (De et al., 2014), recombination
events and type of markers to detect them are critical
for the development of this factor bias.
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Figure 4. Network of candidate pleiotropic genes for carcass
traits in Nellore cattle (taken from Pereira ef al., 2016).

Genomic factors also include heritability bias,
which is related with the gap between the phenotypic
variance explained by GWAS results and those
estimated by classical heritability. Zaitlen and Kraft
(2012) mentioned that “missing heritability” could
be due to presence of rare variants, epistatic and
gene-environment interactions, or structural variation,
that are not well captured by current GWAS or their
analysis methods.

Sampling-related factors
Sample selection is another source of bias. It is

defined as any systematic difference between the sample
and the population affecting its representativeness
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(Shringarpure and Xing, 2014), leading to inaccurate
estimation of relationships between variables (Figure 5).
According to Pyo and Wan (2012), a larger sample
size is required to achieve enough statistical power
and to improve the ability of prediction. On the other
hand, small sample size increases false negative rates
and reduces the reliability of a study.

Paternity misidentification, stratification, and
population structure are also factors related to sample
size and its representativeness. On this regard,
Visscher et al. (2002) determined a proportional
selection response decrease of 2 to 3% for each 10%
of paternity misidentification rate. Additionally,
Sifuentes-Rincon et al. (2006) reported differences
of 47% in the genetic values between simulated-
and uncertain- paternity populations. Similarly,
stratification bias could lead to spurious association
that have no value as a tool for genetic improvement.
In this sense, Zaitlen and Kraft (2012) mentioned that
stratification bias arises when there is a difference in
the phenotypic variance between the population.

Statistical factors

Statistical factors of bias are those related with the
model and the nature of data used. According to Pyo
and Wang (2012), the observed signal for association
is considered statistically significant when the p-value
is lower than a present threshold value (e.g., 0.05) to
reject a null hypothesis of genetic association. Poor
design quality of the database usually means high
p-values and lower recognition of genetic associations
(Ioannidis, 2005), especially if some of the genotypes
have low frequency in the population or traits with
low heritability (Satkoski et al., 2011).

Odd ratios can be a statistical factor of bias (Figure
6) when they are wrongly used as a weighted average
to quantify genetic effects in GAS (Su and Lee, 2016).
Due to their non-collapsible nature and tendency
towards being null, a quantitative difference between
conditional and marginal odd ratios in the absence of
confounding is a mathematical oddity, not a reflection
of bias (Groenwold et al., 2011).

Another factor that could cause bias is collinearity,

which refers to the non-independence of predictor
variables, usually in a regression-type analysis
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Figure 5. Sample size used in genetic association studies
showing type I errors (taken from Ioannidis, 2005).

(Dormann et al., 2013). Yoo et al. (2014) mentioned
that collinearity inflates the variance of regression
parameters with a potential misidentification of
relevant predictors in a statistical model. Dias et al.
(2011) reported multicollinearity in genetic effects
related with weaning weight in a Brazilian cattle
population. They reported 9.8% of bias in the sum
squared deviations, with variance inflation factors
of 16 and 5.3 when using least square and ridge
regression methodologies, respectively.

The presence of collinearity could lead to
collider bias (i.e., the reversal paradox), an artificial
association created between exposures (A and B)
when a shared outcome (X) is included in the model
as a covariate (Day et al., 2016). Day et al. (2016)
identified over 200 spurious GAS, when the shared
outcome was included as a covariate in the model
used to analyze the data.

One of the most important sources of bias in GAS
is the statistical model chosen due to the differences
within obtained results (Figure 7). The first models
used in GAS included only fixed effects, causing
bias when random effects were ignored (Micinski
et al., 2007). On the other hand, mixed models can
differentiate between the effects of random error
and those from systematic error (Pérna et al., 2012).
In the same way, Maximum likelihood (ML) is
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Figure 6. Forest plot of the effects or recombinant bovine
somatotropin on the risk ratio of clinical mastitis (taken from
Dohoo et al., 2003).

another procedure used in GAS with potential of
bias. Kucerova et al. (2006) determined that ML can
estimate genetic associations of casein genes and
reported mean differences in protein concentration
between 42 and 73% across K-casein genotypes (AA,
AB, AE, BB, and BE). However, when estimating a
higher number of associations (e.g., in genome-wide
association studies), the power of mixed models and
ML is reduced.

Extensive GAS need methods to determine the
associations of thousands of markers at once. On
this regard, De los Campos et al. (2009) reported
Bayesian regression models (BM) able to adjust for
the effects of thousands of markers simultaneously.
Tenesa et al. (2003) observed that the differences
between estimates obtained with ML and BM were
small (about 5%), and both estimation procedures
yielded essentially the same results. On the other
hand, there are non-Bayesian models (NBM) that use
information of genotyped and non-genotyped animals
to perform genomic predictions (e.g. single-step
genomic model) (Ma et al., 2015). However, due to
its ability to estimate genetic association, even with
markers lacking information, BM and NBM are under
the influence of sample size and require a pedigree as
complete as possible (Sahana et al., 2010).

Result from BayesC

1 2 3 4 5 6 7 8 910 1112 14 16 18 20 22 24 26 28
Chromosome

Result from BayesD

g % 99 T8 BN N2 N
Chromosome

16 18 20 22 24 26 28

Figure 7. Probabilities of association obtained with two
different Bayesian-based methods (taken from Bennewitz et
al.,2017).

Strategies to correct biases in GAS

The aim of bias correction in GAS methodologies
focuses on bias reduction, rather than its elimination
(Parna et al., 2012). Thus, it is possible to group
bias correction into genetic-genomic, statistical, and
methodological strategies.

Genetic-genomic strategies

Strategies of genetic-genomic bias correction
rest on two aspects: source and conditions of genetic
information. The source of genetic information
in GAS refers to the approach used to obtain and
report genetic information (i.e., single and multi-loci
genotype or haplotype). Instead of analyzing the
effects of individual alleles, some researchers estimate
the effects of haplotypes defined by genes associated
with the traits under study (Zhou et al., 2013), while
other authors use multi-loci genotypes for the same
purpose (Jaiswal et al., 2016).

The use of haplotypes and multi-loci genotypes
can reduce bias arising from the way several genes
are combined, the polygenic effect of the studied
traits, and the position of the analyzed loci within the
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genome. However, unlike multi-loci genotypes, it has
been argued that haplotypes have similar effects on
different breeds (Andrés et al., 2007). As a result, a
common approach to analyzing the effects of haplotype
has been to determine the most likely configuration
for each and assume that this allocation of haplotypes
is known without error when subsequent statistical
analyses are performed. However, precise haplotype
construction could be difficult, and often leads to
biased estimates and reduced analytical power in
GAS (Andrés et al., 2007). In addition, when multiple
loci are genotyped, haplotypes are unknown because
there is no information about linkage phase of alleles
at different loci (Sahana et al., 2010). Sahana et al.
(2010) observed a high rate of type I error when using
haplotypes as a fixed effect in genetic association
models. Zhang et al. (2016) concluded that when there
is alack of tools available to reconstruct haplotypes, the
best alternative is to use multi-loci genotypes regardless
of whether phase adjustment information is available.

Other factors affecting the reliability of results are
the number of markers used for reconstruction and
the way that haplotypes and multi-loci genotypes
are included in GAS models. For reconstruction, the
best results have been obtained using 2 to 5 markers
(Abdallah ez al., 2004). In this sense, the main benefit of
using haplotypes or multi-loci genotypes is their ability
to explain most of the additive, dominance, and epistasis
effects on the loci studied (Zhao et al., 2012). With
respect to inclusion methods, incorporating haplotype
as a random effect conveys better performance
compared with models that include it as a fixed effect
in terms of power, control of type I error, and precision
(Boleckova et al., 2012). Hence, some of the probable
HWP bias in these studies can be avoided, especially
if the nature of the alleles being studied is considered.
Kent et al. (2007) concluded that due to the risk of
wrong associations, it is best to use common genetic
variants greater than 10% as rare alleles generate biases
in their association values and equally affect the values
of common alleles. Therefore, the conditions needed to
establish the use of haplotypes, genotypes, or both in
GAS are of utmost importance for devising strategies
to correct bias of genetic information.

Sampling-related and statistical strategies

Methodological strategies used to avoid sampling
bias are based on grouping individuals or samples
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that share the same features in order to reduce
heterogeneity and increase representativeness of
results (Gustavsson et al., 2014). On the other hand,
the use of previously reported information becomes
important when establishing a methodological bias
reduction strategy. Published information enables
to use features and results previously validated, and
helps to avoid the risk of bias related with transferring
results among breeds (Poulsen et al., 2015).

Methodological strategies to reduce bias associated
with statistical source are based on reviews, as well
as the use of estimates and other literature results to
determine the best models and features for the studied
phenomenon (Brito et al., 2011). Commonly used
association methods are based on family structure
(pedigree) and case-control studies with unrelated
individuals (De los Campos et al., 2009). However,
case-control studies are the most viable to study
genetic association because studies based on family
structure involve extended testing periods (Kent
et al., 2007). The presence of type I errors due to
the subjective nature of the estimates (underlying
assumptions) could address the risk of under- or
overestimation of studied traits (Zoche-Golob ef al.,
2015). Therefore, the best strategy to reduce statistical
bias lies in all aspects related to the predictive power
of the approaches since it depends on all elements of
bias that might arise.

In conclusion, it is necessary to consider the
methodology used in previous GAS to establish a
hierarchy of sources of bias and to facilitate better
decisions on the use of tools to reduce inconsistencies
in the results of future studies.
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