Presence of Helicobacter spp. in dental tartar and gastric mucosa, and its relationship with EGUS in horses from a public slaughterhouse

This unedited manuscript has been accepted by RCCP for future publication and is provisionally published on our website. The manuscript will undergo copyediting, typesetting, and galley review before final publication. Please note that this advance version may differ from the final version.
Presence of Helicobacter spp. in dental tartar and gastric mucosa, and its relationship with EGUS in horses from a public slaughterhouse

Presencia de Helicobacter spp. en sarro dental y mucosa gástrica y su relación con SUGE en equinos de una planta de beneficio

Presença de Helicobacter spp. em tártaro dentário e mucosa gástrica e sua relação com SUGE em equinos de um abatedouro

Angélica M. Zuluaga-Cabrera1*; Camilo Jaramillo-Morales2; José R. Martínez-Aranzales1

1Centauro Research Group, Línea de Investigación en Medicina y Cirugía Equina (LIMCE), Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín – Antioquia (Colombia).
2Programa de Medicina Veterinaria, Facultad de Ciencias Administrativas y Agropecuarias, Corporación Universitaria Lasallista, Caldas – Antioquia (Colombia). Current address: Veterinary Medicine Teaching Hospital, School of Veterinary Medicine, University of California – Davis, CA, USA.

To cite this article:
Zuluaga-Cabrera AM, Jaramillo-Morales C, Martínez-Aranzales JR. Presence of Helicobacter spp. in dental tartar and gastric mucosa, and its relationship with EGUS in horses from a public slaughterhouse. Rev Colomb Cienc Pecu. Year, volume, number and pages pending. DOI: https://doi.org/10.17533/udea.rccp.v35n1a06

Abstract

Background: Despite the fact that Helicobacter spp. has been detected in equine gastric mucosa, no evidence exists about this infection in Colombian horses affected by equine ulcerative gastric syndrome (EGUS), nor in dental tartar. Objective: To detect Helicobacter spp. DNA in equine gastric mucosa and dental tartar and determine the relationship between the presence of Helicobacter spp. and gastric lesions. Methods: Samples of glandular gastric...
mucosa and dental tartar were collected from 30 equine slaughterhouses. Macroscopic lesions of the stomachs were classified, and the total DNA in all samples was extracted using a commercial extraction kit. A final-point PCR was performed, using primers for amplification of a segment of 251 pb of the gene encoding the 16s rRNA region; the amplified fragments were subjected to a second PCR to determine the presence of *H. pylori*, the VacA gene was typified. The resulting amplicons were sequenced. **Results:** It was possible to amplify 16s rRNA in several samples but there was no amplification of VacA. Fragments of the sequences were compatible with *H. heilmannii*. The 23.3 and 10% of gastric and tartar samples were positive for 16s rRNA of *Helicobacter* spp., respectively. **Conclusion:** Although genetic material of *Helicobacter* spp. was found in some animals, there was no relationship with gastric lesions. It is possible that helicobacteriosis has no bearing in EGUS etiology.

Keywords: Gastritis; horse; mucosa; PCR; post-mortem; stomach; tartar; ulcer.

Resumen

Antecedentes: a pesar de que se ha detectado *Helicobacter* spp. en mucosa gástrica equina, no existe evidencia de esta infección en caballos criollos colombianos afectados por síndrome ulcerativo gástrico (SUGE), además no reportes en sarro dental. **Objetivo:** detectar ADN de *Helicobacter* spp. en sarro dental y mucosa gástrica de equinos, y determinar la relación entre la presencia de la bacteria y lesiones gástricas. **Métodos:** las muestras de mucosa glandular gástrica y sarro dental fueron colectadas de 30 equinos que se encontraban en planta de beneficio. Las lesiones macroscópicas fueron clasificadas y el ADN total de las muestras fue extraído utilizando un kit comercial. Se desarrolló PCR convencional usando cebadores específicos para la amplificación de un segmento de 251 pb de un gen que codifica la región 16S del ARNr; los fragmentos amplificados fueron sometidos a una segunda PCR para determinar la presencia de *H. pylori* mediante la amplificación del gen VacA. Los amplificados resultantes fueron secuenciados. **Resultados:** fue posible amplificar 16s ARNr en varias muestras, pero no hubo amplificación de VacA. Los fragmentos de las secuencias fueron compatibles con *H. heilmannii*. El 23,3 y 10% de las muestras gástricas y sarro fueron positivas para 16s ARNr de *Helicobacter* spp., respectivamente. **Conclusión:** aunque el material genético de *Helicobacter* spp. se encontró en algunos animales, no hubo relación con las lesiones gástricas. Es posible que la helicobacteriosis no tenga incidencia en la etiología del EGUS.

Palabras clave: caballo; estómago; gastritis; mucosa; PCR; post-mortem; sarro; úlcera.
Resumo

Antecedentes: apesar do Helicobacter spp. ter sido detectado na mucosa gástrica de eqüinos, não há evidências dessa infecção em cavalos crioulos colombianos afetados pela síndrome ulcerativa gástrica (SUGE), ou no sarro. **Objetivo:** detectar ADN de Helicobacter spp. na mucosa gástrica e do sarro dental de equinos, e determinar a relação entre a presença de Helicobacter spp. e lesões gástricas. **Métodos:** amostras de mucosa gástrica glandular e sarro dental foram coletadas de 30 equinos de abatedouro, as lesões macroscópicas dos estômagos foram classificadas. Se realizou extração de ADN total em todas as amostras através de kit comercial. Realizou-se PCR ponto final, amplificando o segmento de 251pb do gene que codifica para a região 16s ARNr; os fragmentos amplificados foram sometidos novamente a PCR para determinar a presença de H. pylori, ao tipificar o gene VacA, e seguidamente foram sequenciados. **Resultados:** o houve amplificação do 16s ARNr em várias amostras, mas não amplificação de VacA. Fragmentos das sequencias foram compatíveis com H. heilmannii. O 23.3 e 10% das amostras gástricas e do sarro foram positivas para 16s ARNr de Helicobacter, respectivamente. **Conclusão:** embora material genético de Helicobacter spp. encontrou-se em alguns animais não houve relação com lesões gástricas. Possivelmente a helicobacterioses não tem papel relevante na etiologia da SUGE.

Palavras-chave: cavalo; estômago; gastrite; mucosa; PCR; post mortem; tártaro; úlcera.

Introduction

Helicobacter pylori infection has importance in pathogenesis of ulceration and gastric cancer, among other extra-digestive diseases in humans (Figueroa et al., 2010). This type of bacterium is gram-negative, microaerophilic, flagellated, pleomorphic (although its usual shape is spiral; Hermanns et al., 1995), oxidase, catalase, and urease positive (Montgomery et al., 1988). Studies on *Helicobacter* spp. conducted in ferrets, leopards, primates, calves (Hermanns et al., 1995), sheep, pigs (Barbosa et al., 1995), cats and dogs (Jalava et al., 1998; Neiger and Simpson, 2000) showed high gastric presentation. Inoculation of *H. pylori* in animal models has developed the same pattern of chronic active gastritis as in humans (Lee, 1998). Cardona et al. (2009) described chronic inflammatory patterns in gastric mucosa of equines with presence of *Helicobacter* spp. determined by rapid urease test and histological evaluation. Although
several species, such as *H. felis, H. heilmannii, H. bizzozeronii, H. bitis, H. salomonis, H. rappini*, have been isolated besides *H. pylori* in animals, there is little information on equines regarding the relationship between this infection and gastric disease. Nor is there information on ways of infection, transmission and/or zoonotic potential of *Helicobacter* spp. in equines, as known in other domestic species.

H. pylori diagnosis can be performed with invasive (direct) or noninvasive (indirect) methods. Invasive methods require trans-endoscopic collection of biopsies for identification of the bacterium, such as rapid urease testing, cytology, histopathology, cultures and PCR. Non-invasive methods depart from the indirect demonstration of the presence of the bacterium, such as the labeled urea breath test and serological tests.

Due to the presence of this bacterium in the gastric surface of equines, it has been proposed as a cause for equine gastric ulcer syndrome (EGUS), accompanied by other microorganisms and bacterial metabolites. *Helicobacter pylori* and *Helicobacter equorum* have been isolated both in ulcerated and in healthy equines, with a controversial participation in EGUS physiopathology in European and North American studies, which present high incidence and prevalence of this syndrome (Scott et al., 2001; Bezdekova and Futas, 2009; Moyaert et al., 2009).

The high transmissibility, the possible zoonotic potential and the significant association between *Helicobacter* spp. and gastric pathologies in humans, together with the high presence of EGUS (specially equine gastric glandular disease-EGGD), justify the development of studies oriented to knowing the participation of this bacterium in gastric mucosa alterations in the Colombian Creole horse, through molecular characterization, to determine the homology between the species infecting both humans and equines.

The aim of this study was to detect *Helicobacter* spp. DNA in equine gastric mucosa and dental tartar and determine the relationship between the presence of *Helicobacter* spp. and gastric lesions. We hypothesized that there is not relantionship between *Helicobacter* spp. colonization and EGGD and that there is *Helicobacter* spp. in the dental tartar.

Materials and methods

Bioethics committee approval
The study was approved by the Ethics Committee in Animal Experimentation of the University of Antioquia through endorsement of June 2014.

Animals

At convenience sample of 30 slaughterhouse equines from a slaughterhouse in the municipality of Rionegro, Antioquia (Colombia) were used. The facilities are located at the coordinates 6°09′12″N 75°22′27″W, with 2080 m.a.s.l, and an average temperature of 18.5 °C.

Evaluation of the gastric surface

The stomachs obtained post-mortem were opened and washed with distilled water, identified numerically and later photographed. The lesions found in the glandular regions, pyloric antrum, squamous area (*Margo plicatus*) and cardial area were classified according to the system recommended by Sykes *et al.* (2015; Figure 1).

Figure 1. Stomach prepared for lesion classification. C = Cardias, SR = Squamous region, MP: *Margo plicatus*, GR = Glandular region, PA = Pyloric antrum, D = Duodenum.

Sample collection

Both stomach and head of each individual, previously prepared and numbered, were sampled. Fragments of glandular gastric mucosa (*fundus*) of approximately 1 cm² were obtained, using a sterile scalpel blade for each individual. Tartar samples were obtained by friction with a curette (sanitized with 2% glutaraldehyde between individuals) on the enamel surface of the upper incisors. Subsequently, both were submerged in a 2.5 ml cryovial with sterile PBS 1X
for freezing (-20 °C). These samples were directly taken at the slaughterhouse, from horses starved for at least 8 hours.

Total DNA extraction

Total DNA extraction was performed with a commercial extraction kit (Wizard® Genomic DNA Purification Kit; Madison, WI, USA) added with proteinase k (60 µl per sample) for the processing of the stomach samples. Dental tartar samples were subjected to extraction with columns (Qiagen® DNeasy Blood & Tissue Kit; Hilden, Germany). Once the total DNA was extracted, electrophoresis was performed by adding 1 µl of loading buffer to 1 µl of each sample, on a 2% agarose gel, in order to evidence the extracted product. The extracted DNA was stored in a cryovial for freezing (-20 °C).

Amplification of the encoding gene of the *Helicobacter* spp. 16s rRNA region

A final-point PCR was performed, using primers for amplification of a segment of 251 pb of the gene which encodes for the 16s rRNA, whose sequence was: HelF (forward) 5’-CGTGGAGGATGAAGGTTTTA-3’ and HelR2 (reverse) 5’-AATTCCACCTACCTCTCCCC-3’ (Recordati et al., 2007).

A commercial mix was used for PCR (GoTaq Green Master Mix®; Madison, WI, USA) (10.5 µl per reaction), added with 0.5 µl of each primer (initiator and reverse), 10 µM, 4.5 µl of deionized sterile water and 2 µl of DNA (final volume per reaction: 18 µl). The PCR conditions were given as follows: 5 minutes at 94 °C, followed by 40 cycles of denaturalization at 94 °C for 30 seconds; alignment of primers at 45 °C for 30 seconds, and extension to 72 °C for 30 seconds, with a final extension step at 72 °C for 7 minutes. *Helicobacter pylori* DNA, donated by the Gastrohepatology laboratory of the Facultad de Medicina of the Universidad de Antioquia (Figure 2) was used as positive control.
Figure 2. Electrophoresis in agarose gel at 2% of the amplified fragments of the coding gene for the *Helicobacter pylori* 16s rRNA region (positive control). MWM = Molecular weight marker; Control A = Amplified fragments of primers C98 and C97 (16s rRNA) of the duplicate positive control; Control B = Amplified fragments of primers HelF and HelR (16s rRNA) of the duplicate positive control; Control C = Duplicate negative control.

Amplification of the encoding gene of the *Helicobacter pylori* VacA region

Primers for the *H. pylori* VacA region were used since it is considered to be a species’ own virulence factor. The detection of a gene sensitive for detecting the microorganism was also considered. The PCR results that were evidenced to be identical to the positive control (encoding gene of the 16s rRNA region) were subjected to a new PCR to determine the presence of *H. pylori*. To this end, the VacA gene was typified in the samples by using VacA primers (s) (initiator) 5’-ATG GAA ATA CAA CAA ACA CAC 3’ (reverse) 5’ CTG CTT GAA TGC GCC AAA C 3’; and VacA (m) (initiator) 5’ CAA TCT GTC CAA TCA AGC GAG 3’ (reverse) 5’ GCG TCT AAA TAA TTC CAA GG 3’. PCR conditions for both VacA “s” and “m” were given as follows: 2 minutes at 92 ºC, followed by 35 cycles of denaturalization at 94 ºC for 1 minute, alignment of primers at 55 ºC for 1 minute, and extension to 72 ºC for 1 minute.

Sequencing

Sequencing was performed in Macrogen™ laboratories (Korea). Sequences were analyzed using BLAST (Basic Local Alignment Search Tool; http://blast.ncbi.nlm.nih.gov) to compare the nucleotide sequences from the PCR products of the amplified region with any similar sequence reported in the GenBank.
Results

All the gastric tissue and dental tartar samples required maceration prior to applying the extraction protocol. All the stomach samples evidenced DNA extracted by electrophoresis in 2% agarose gel. By contrast, only some of the tartar samples evidenced ADN through electrophoresis.

It was possible to amplify the encoding fragment for the 16s rRNA region. However, for the VacA gene (s and m) no amplification was found, even though the positive control worked properly.

The samples (stomach and tartar) from which fragments were amplified were considered Helicobacter-positive. These fragments have gel diffusion compatible with the sequence of the coding gene of the Helicobacter spp. 16s rRNA region. 23.3% (7/30) of the stomach samples were positive, while 10% (3/30) of tartar samples were positive.

The 3 or 4-degree lesions were evidenced in Margo plicatus, or cardial region, some of those injured stomachs were Helicobacter-positive (4/7). The remaining positive results corresponded to stomachs classified with lesions 0 – 2 (Table 1).

Table 1. Classification of gastric lesions according to Sykes et al. (2015) and result of the PCR for each region, per individual.

<table>
<thead>
<tr>
<th>Sample/Horse</th>
<th>Glandular region</th>
<th>Pyloric antrum</th>
<th>Squamous region</th>
<th>Cardial region (Margo plicatus)</th>
<th>PCR (Stomach)</th>
<th>PCR (Tartar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
The sequences obtained were not clear and made confirmation of *Helicobacter* spp. DNA difficult in the amplified fragment from the described protocol. Fragments of the clearer sequences were compatible with *H. heilmannii* in 25 nucleotides. The positive control sequence was 100% compatible with *H. pylori* in both gastric mucosa and tartar.

Discussion

According to our results, it was not possible to establish a relationship between lesions in squamous mucosa (equine squamous gastric disease-ESGD) or glandular mucosa (EGGD) and the presence of *Helicobacter* spp. in the group of animals sampled. This confirms that, as has been described in other horse breeds, infection by *Helicobacter* spp. and ESGD or EGGD are not related.
In addition, it was found that sequencing and verification of the species in GenBank detected a homology of 25 nucleotides as *H. heilmannii*. This species has been reported as commensal in horses (Perkins *et al.*, 2012; Dong *et al.*, 2016). In other studies, like the study performed by Husted *et al.* (2010), *Helicobacter* does not appear in gastric microbiome of slaughtered horses, even, in lesioned gastric tissue. In the knowledge of the authors this is the first report of *Helicobacter* spp. in dental tartar in horses. On the other hand, using UREI gen of *Helicobacter* has been used to detect gastric infection in horses and, in contrast with our results, could found developing infections (Hepburn, 2004).

Some authors reported the preservation of the samples in absolute ethanol to ensure integrity of the bacterium during preservation (Contreras *et al.*, 2007). In contrast, the present study preserved the samples in sterile PBS 1X; this difference could have affected the quality of the extracted DNA, since loss of tissue integrity of some of the samples was evidenced after cryopreservation, which was reflected in DNA damages evidenced in the electrophoresis for the appearance of a great number of artifacts. Because glutaraldehyde 2% was used to sanitize the curette, it might have caused the inconsistent sequencing results (Churro *et al.*, 2015). This could imply loss of positive results.

The total DNA extraction protocol had to be modified, with the addition of proteinase k, in order to achieve the complete dehiscence of the tissues. The PCR protocol was taken from a study on gastric mucosa and dental tartar in dogs; however, even though the described conditions were replicated, numerous bands by sample of DNA subjected to electrophoresis were obtained, so such protocol also suffered a temperature adjustment of primer alignment.

Due to the method of obtaining the stomach samples post-mortem, it was possible to process the totality of them (including all stomach layers from the mucosa to the serosa), ensuring detection of the bacterium in any of the layers. This differs from studies conducted from biopsy samples by endoscopy, where the fragments obtained only sometimes include mucus and epithelial cells of the mucous layer.

As described by Contreras *et al.* (2007), the appearance of DNA compatible with *Helicobacter* spp. was more frequent in stomachs with mild or non-existing lesions, whereas the majority of those characterized as deep lesions did not correspond to positive samples for *Helicobacter* spp. This can happen because the loss of tissue integrity does not offer favorable conditions for the
microorganism to remain viable, and therefore it is presumed that this microorganism moves to healthy tissue, facilitating its detection there. Consequently, establishing the relationship between the presence of *Helicobacter* spp. and gastric lesions is a complex issue.

This work’s results contrast with those conducted in humans since they have shown 100% of association in both samples, in bacterial plaque or tartar and in gastric mucosa (Scarano *et al.*, 2005), while the present study did not find any relationship between the dental tartar and gastric mucosa results in the sampled equines.

In conclusion, the 23.3% of the stomach and 10% of tartar samples amplified for the gene encoding for the 16s rRNA region of *Helicobacter* spp. In no case a relationship with gastric lesions was found. The present study suggests that there is no direct relationship between helicobacteriosis and EGUS or EGGD, and that the infecting species of *Helicobacter* spp. in the horse stomach do not correspond to those with zoonotic potential. *Helicobacter* spp. DNA detection in equine tartar sets the foundations for conducting new epidemiologic studies about this condition, since it is the first time this is reported.

Declarations

Acknowledgements

The authors thank the Gastrohepathology Research Group of the Facultad de Medicina, Universidad de Antioquia; the sustainability strategy from CODI 2015-2016, Universidad de Antioquia; the Laboratory of Clinical and Veterinary Studies and the Research, Corporación Universitaria Lasallista.

Conflicts of interest

The authors declare they have no conflicts of interest with regard to the work presented in this report.

Author contributions

Angélica M. Zuluaga-Cabrera wrote the manuscript with support from the co-authors, conceived the original idea and supervised the project. Camilo Jaramillo-Morales contributed
to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. José R. Martínez-Aranzales contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

References

Churro C, Valério E, Pereira P, Vasconcelos V. Applicability of the real-time PCR assay in the amplification of cyanobacterial DNA from preserved samples. Limnetica 2015; 34(1):173-186. DOI: https://doi.org/10.23818/limn.34.14

Hepburn RJ. Investigation into the presence of *Helicobacter* in the equine stomach by urease testing and polymerase chain reaction and further investigation into the application of the 13C-urea blood test to the horse. Virginia Polytechnic Institute, doctoral thesis, 2004. [access December 1st, 2020] URL: https://vtechworks.lib.vt.edu/handle/10919/33587

