SHORT COMMUNICATION

Effects of ivermectin on cytokine and immunoglobulin levels in sheep

Efectos de la ivermectina en los niveles de citocinas e inmunoglobulinas en ovejas

Efeitos da ivermectina nos níveis de citocinas e imunoglobulinas em ovinos

Rahmi Canbar1; Irmak Dik2; Muhittin Uslu3; Merve Ider4; Mustafa-Sedat Arslan5; Enver Yazar6*

1Department of Pharmacology and Toxicology, Veterinary Medicine, Necmettin Erbakan University, 42310, Eregli, Konya, Turkey
2Department of Virology, Faculty of Veterinary Medicine, Selcuk University, 42130, Selçuklu, Konya, Turkey
3Laboratory and Veterinary Health Program, Sefaatli Veterinary Department, Yozgat Bozok University, 66800, Sefaatli, Yozgat, Turkey
4Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, 42130, Selçuklu, Konya, Turkey
5Department of Anatomy, Faculty of Veterinary Medicine, Selcuk University, 42130, Selçuklu, Konya, Turkey
6Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, 42130, Selçuklu, Konya, Turkey

Received: February 2, 2023. Accepted: May 16, 2023

*Corresponding author. Alaeddin Keykubat Campus, Ardicli Mah, Selcuklu, 42130, Konya, Turkey: Tel.: +90 332 2232693, E-mail: eyazar@selcuk.edu.tr

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2022 Universidad de Antioquia. Published by Universidad de Antioquia, Colombia.
To cite this article:

Abstract

Background: Ivermectin may changes the levels of cytokines and immunoglobulins in sheep, considering that avermectins affect the immune system. Objective: To determine the effect of ivermectin on the cytokines and immunoglobulins in sheep. Methods: After administration of ivermectin to 10 healthy sheep, sheep-specific interferon-α, tumor necrosis factor-α, interleukin-2, interleukin-6, and interleukin-10, immunoglobulin G, immunoglobulin M, and immunoglobulin E levels were measured with ELISA reader. Results: Statistically significant (p<0.05) fluctuations were detected in interleukin-2 and interleukin-10 levels. Transient increases (p<0.05) were measured in tumor necrosis factor-α and immunoglobulin E levels (p<0.05). Conclusion: Ivermectin may affect immune system parameters in healthy sheep, however, the effects of ivermectin administration on infected sheep should be investigated.

Keywords: immunoglobulin E; immunoglobulin G; immunoglobulin M; interferon-α; interleukin-2; interleukin-6; interleukin-10; ivermectin; sheep; tumor necrosis factor-α.

Resumen

Antecedentes: La ivermectina puede alterar los niveles de citocinas e inmunoglobulinas en ovinos, considerando que las avermectinas afectan el sistema inmunológico. Objetivo: Determinar el efecto de la ivermectina sobre las citocinas e inmunoglobulinas en ovinos. Métodos: Después de la administración de ivermectina a 10 ovejas sanas, los niveles de interferón-α específico de oveja, factor de necrosis tumoral-α, interleucina-2, interleucina-6 e interleucina-10, inmunoglobulina G, inmunoglobulina M e inmunoglobulina E se midieron con un lector ELISA.

Resultados: Se detectaron fluctuaciones estadísticamente significativas (p<0.05) en los niveles de interleukin-2 e interleukin-10. Se midieron aumentos transitorios (p<0.05) en los niveles de factor de necrosis tumoral-α e inmunoglobulina E (p<0.05). Conclusión: la ivermectina puede afectar los parámetros del sistema inmunitario en ovejas sanas.
Palavras chave: factor de necrosis tumoral-α; imunoglobulina E; imunoglobulina G; imunoglobulina M; interferón-α; interleucina-2; interleucina-6; interleucina-10; ivermectina; oveja.

Resumo
Antecedentes: A ivermectina pode alterar os níveis de citocinas e imunoglobulinas em ovinos, visto que as avermectinas afetam o sistema imunológico. Objetivo: Determinar o efeito da ivermectina nas citocinas e imunoglobulinas em ovinos. Métodos: Após a administração de ivermectina a 10 ovelhas saudáveis, interferon-α específico de ovelha, fator de necrose tumoral-α, interleucina-2, interleucina-6 e interleucina-10, os níveis de imunoglobulina G, imunoglobulina M e imunoglobulina E foram medidos com Leitor de ELISA. Resultados: Flutuações estatisticamente significativas (p<0,05) foram detectadas nos níveis de interkeukin-2 e interkeukin-10. Aumentos transitórios (p<0,05) foram medidos nos níveis de fator de necrose tumoral-α e imunoglobulina E (p<0,05). Conclusão: A ivermectina pode afetar parâmetros do sistema imunológico em ovinos saudáveis, entretanto, os efeitos da administração de ivermectina em ovinos infectados devem ser investigados.

Palavras-chave: fator de necrose tumoral-α; imunoglobulina E; imunoglobulina G; imunoglobulina M; interferão-α; interleucina-2; interleucina-6; interleucina-10; ivermectina; ovelha.

Introduction
Ivermectin, a macrocyclic lactone, is used orally or parenterally in the treatment of nematodes or ectoparasites in many animal species (Yazar, 2020) and humans (Ashour, 2019). It is used in the therapy of gastrointestinal, eye and lung nematodes, filariasis and ectoparasites in sheep (Yazar, 2020). It can affect the immune system by affecting cytokines such as tumor necrosis factor (TNF)-α, and interleukin (IL)-6 (Bekdur et al., 2018), and immunoglobulins (Yan et al., 2011). Interleukins can be proinflammatory or anti-inflammatory, depending on the role they play in inflammation. Interferon (IFN)-α, TNF-α, and IL-6 are proinflammatory cytokines, while IL-2 and IL-10 are anti-inflammatory cytokines. Interferons mainly show antiviral activity, TNF-α is an important mediator of acute infection, and IL-6 stimulates the synthesis of acute-phase proteins and immunoglobulins (Akdogan and Yontem, 2018). Five different types of immunoglobulins are secreted by B lymphocytes. IgG is the most abundant immunoglobulin. IgM is synthesized in the acute phase of infections, after which it decreases and is replaced by IgG (Yilmaz and Akgul,
2014). Normally, IgE is found at very low levels and is associated primarily with allergic reactions (Amarasekera, 2011).

As ivermectin can stimulate the immune system (Blakley and Rousseaux, 1991; Omer et al., 2012), it has been hypothesized that ivermectin administration to healthy sheep might affect specific immune system components such as cytokines and immunoglobulins. The aim of this study was to investigate short-term effects of ivermectin on the cytokines (IFN-α, TNF-α, IL-2, IL-6, IL-10) and immunoglobulins (IgG, IgM, IgE) in healthy sheep.

Materials and methods

Ethical considerations

All the procedures were approved by the ethics committee (SUVDAMEK: 2020/79).

Animals and experimental design

Ivermectin (Vilmectin™, Vilsan, Ankara, Turkey) at a dose of 0.2 mg/kg (SC, SID, 3 days) was administered to 10 Anatolian Merino sheep (2.5-3 years old, 61.5-68.5 kg; Ashour, 2019).

Analysis of cytokines and immunoglobulins

ELISA reader (MWGt Lambda Scan 200, Bio-Tec Instruments, Winooski, VT, USA) was used to measure sheep-specific IFN-α (IFN-α Kit, BT Lab, Jiaxing, Zhejiang, China), TNF-α (TNF-α Kit, BT Lab), IL-2 (IL-2 Kit, BT Lab), IL-6 (IL-6 Kit, BT Lab) and IL-10 (IL-10 Kit, BT Lab) in sera collected at day before (0 day) and 0.25, 0.5, 1, 2, 3, 4, 5 and 6 days, and IgG (IgG kit, BT Lab), IgM (IgM kit, BT Lab) and IgE (IgE kit, BT Lab) obtained from serum samples taken at day before (0 day) and 1, 3, 7, 10, 13, 16, 19, and 21 days after application of ivermectin.

Statistical analysis

Data were evaluated by ANOVA and Duncan’s multiple range test (SPSS 22.0). A p<0.05 was considered statistically significant.

Results

Cytokine and immunoglobulin levels are presented in Table 1 and 2, respectively. Significant fluctuations in IL-2 and IL-10, and a temporary increase in TNF-α and IgE levels were determined. However, no statistically significantly changes were observed in the INF-α, IL-6, IgG, and IgM levels.
Table 1. The effects of ivermectin (0.2 mg/kg, SC, SID, 3 days) on serum cytokine levels in sheep (mean ± SE).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0th day</th>
<th>0.25th day</th>
<th>0.5th day</th>
<th>1th day</th>
<th>2nd day</th>
<th>3rd day</th>
<th>4th day</th>
<th>5th day</th>
<th>6th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF-α ng/L</td>
<td>50.31±2.93</td>
<td>51.74±3.06</td>
<td>51.81±7.40</td>
<td>50.85±3.47</td>
<td>50.15±3.41</td>
<td>48.77±5.04</td>
<td>42.53±3.67</td>
<td>56.68±2.38</td>
<td>56.42±5.60</td>
</tr>
<tr>
<td>TNF-α ng/L</td>
<td>40.12±4.98<sup>b</sup></td>
<td>57.12±9.08<sup>ab</sup></td>
<td>77.04±13.13<sup>b</sup></td>
<td>55.56±6.63<sup>ab</sup></td>
<td>53.87±8.61<sup>ab</sup></td>
<td>54.28±8.862<sup>ab</sup></td>
<td>48.93±9.66<sup>b</sup></td>
<td>40.96±5.93<sup>b</sup></td>
<td>46.52±6.72<sup>b</sup></td>
</tr>
<tr>
<td>IL-2 ng/L</td>
<td>7.62±2.44<sup>ab</sup></td>
<td>6.41±2.03<sup>ab</sup></td>
<td>5.54±1.82<sup>ab</sup></td>
<td>7.46±2.86<sup>ab</sup></td>
<td>7.08±3.16<sup>ab</sup></td>
<td>13.33±3.27<sup>a</sup></td>
<td>11.13±2.46<sup>ab</sup></td>
<td>8.43±2.20<sup>ab</sup></td>
<td>4.47±1.81<sup>b</sup></td>
</tr>
<tr>
<td>IL-10 ng/L</td>
<td>18.84±14.01<sup>ab</sup></td>
<td>14.45±9.15<sup>ab</sup></td>
<td>13.08±10.97<sup>ab</sup></td>
<td>3.81±3.81<sup>b</sup></td>
<td>3.42±2.98<sup>b</sup></td>
<td>23.99±13.82<sup>ab</sup></td>
<td>34.20±7.78<sup>ab</sup></td>
<td>39.77±10.78<sup>a</sup></td>
<td>41.86±13.65<sup>a</sup></td>
</tr>
</tbody>
</table>

^{a, b}: Different letters on the same line are statistically significant (p<0.05).

Table 2. The effects of ivermectin (0.2 mg/kg, SC, SID, 3 days) on serum immunoglobulins in sheep (mean ± SE).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0th day</th>
<th>1st day</th>
<th>3rd day</th>
<th>7th day</th>
<th>10th day</th>
<th>13th day</th>
<th>16th day</th>
<th>19th day</th>
<th>21st day</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG mg/mL</td>
<td>2.25±0.21</td>
<td>2.30±0.15</td>
<td>2.30±0.16</td>
<td>2.49±0.18</td>
<td>2.36±0.29</td>
<td>2.69±0.22</td>
<td>2.34±0.29</td>
<td>2.67±0.32</td>
<td>2.80±0.28</td>
</tr>
<tr>
<td>IgM mg/mL</td>
<td>0.28±0.11</td>
<td>0.18±0.09</td>
<td>0.07±0.05</td>
<td>0.19±0.09</td>
<td>0.09±0.06</td>
<td>0.06±0.03</td>
<td>0.14±0.08</td>
<td>0.27±0.12</td>
<td>0.18±0.10</td>
</tr>
<tr>
<td>IgE mcg/mL</td>
<td>0.38±0.29<sup>b</sup></td>
<td>0.65±0.39<sup>b</sup></td>
<td>0.39±0.26<sup>b</sup></td>
<td>0.41±0.38<sup>b</sup></td>
<td>0.65±0.27<sup>b</sup></td>
<td>2.05±0.39<sup>a</sup></td>
<td>0.98±0.26<sup>b</sup></td>
<td>0.67±0.29<sup>b</sup></td>
<td>1.03±0.23<sup>b</sup></td>
</tr>
</tbody>
</table>

^{a, b}: Different letters on the same line are statistically significant (p<0.05).
Discussion
In this research, ivermectin was used 0.2 mg/kg (SC, SID, 3 days) according to the literature, where it is used 0.2 mg/kg (SID, three days) dose in the therapy of trichuriasis (Ashour, 2019). Ivermectin caused significant (p<0.05) fluctuations in IL-2 and IL-10 and a temporary increase (p<0.05) in TNF-α, which peaked at day 0.5 (Table 1). In cattle with papillomatosis, ivermectin administration resulted in a transient non-significant increase in TNF-α and IL-6 (Bekdur et al., 2018). In an allergic asthma mouse model, ivermectin induced a decrease in IL-4, IL-5, and IL-13 (Yan et al., 2011). When assessing the effects of ivermectin on cytokines secreted from lipopolysaccharide-induced macrophages in vitro, researchers reported that TNF-α and IL-1β were suppressed, IL-10 was increased, and IL-6 was not affected (Ci et al., 2009). Similarly, after ivermectin was given to mice administered a lethal dose of lipopolysaccharide, it suppressed the production of TNF-α, IL-1β, and IL-6 (Zhang et al., 2008). In an atopic dermatitis mouse model, ivermectin suppressed the production of many cytokines (Ventre et al., 2017). In this study, while ivermectin had no significant effect on IgG and IgM levels (p>0.05), it caused a temporary increase in IgE, which peaked on day 13 (Table 2). It also has been shown to reduce IgG and IgE levels and may exert antiallergic effects in an experimental asthma mouse model (Yan et al. 2011). In contrast, IgE, found at high levels in patients with hookworm-related cutaneous larva migrans, increased even more after ivermectin administration (Shimogawara et al., 2013). It has been speculated that ivermectin may exert immunostimulatory effects via T lymphocytes (Blakley and Rousseaux, 1991) or macrophages (Omer et al., 2012), possibly providing an alternative approach in immunosuppressed patients. Ivermectin was shown not to be an immunostimulant in healthy dogs (Paradis, 1999) and had no direct effect on the immune response in ectoparasite-infected rabbits and rats (Uhlir and Volf, 1992). These results indicate that the effect of ivermectin on cytokines and immunoglobulins may vary by animal species and disease.

In conclusion, ivermectin at a dose of 0.2 mg/kg (SC, SID, 3 days) to healthy sheep caused changes in some serum cytokines (IL-2, IL-10, TNF-α) and IgE levels. However, these effects of ivermectin may vary according to the disease and animal species.

Declarations

Funding
This research was supported by SUBAPK (No: 20401142).
Conflict of interest
The authors declare they have no conflicts of interest with regard to the work presented in this report.

Author contribution
Rahmi Canbar, Irmak Dik, Muhittin Uslu and Enver Yazar wrote and prepared the manuscript. Irmak Dik, Muhittin Uslu, Merve Ider and Mustafa-Sedat Arslan contributed to the review and approval of the final version of the manuscript. Enver Yazar, Muhittin Uslu and Irmak Dik worked on the aspects involved in the methodology and statistical analysis. All authors read and agreed with the published version of the manuscript.

References

Akdogan M, Yontem M. Cytokines. OTSBD; 2018; 3:36-45. https://doi.org/10.26453/otjhs.350321

