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 26 

Abstract 27 

 28 

Background: The use of different animal species for chondrocyte culture has been employed 29 

to investigate the diseases that affect cartilage, including osteoarthritis. Bovine cartilage and 30 

chondrocytes can be used to establish three-dimensional cell cultures, which offer a more 31 

dependable in vitro model when compared to conventional monolayer cultures. However, 32 

bovine chondrocytes in three-dimensional cultures have not been widely implemented, losing 33 

a potential source of mammal tissue that could prove valuable for preclinical studies on 34 

osteoarthritis. Objective: The objective of this study was to conduct a comprehensive review 35 

of the existing scientific literature that employs three-dimensional cultures of bovine 36 

cartilage to investigate osteoarthritis. Methods: A systematic search was performed using the 37 

electronic databases PubMed and Scopus, to identify clinical studies using 3D cell culture 38 

for osteoarthritis. Search terms included: ´3D culture’, ‘3D cell culture’, ‘bovine cartilage’ 39 

and ‘chondrocyte’. A total of 59 articles were gathered, and after screening, 12 articles were 40 

included in the final analysis. Risk of bias assessment was conducted categorizing each of 41 

the studies as having a 'low,' 'medium,' or 'high' risk of bias. Results: Analysis of the articles 42 

included in this review highlighted the increased variability in harvesting sites involving 43 

carpal, metacarpal, and knee joints, as well as variation in culture methods utilizing cell 44 

passages ranging from passage zero to passage nine. Moreover, medium, and high risk of 45 

bias were detected in all the articles probably due to challenges in randomization and blinding 46 

of the studies. In summary, this review critically examines three-dimensional cell culture for 47 

the investigation of cartilage disorders, with a particular emphasis on bovine cartilage. 48 

Conclusions:  Future studies using chondrocyte culture in 3D or tissue-engineered 49 

constructs, should include consistent methods across the in vitro phase of the study. Factors 50 

such as chondrocyte harvest site, donor age, and passage number can significantly impact 51 

biological characteristics and cartilage regeneration potential. Therefore, it is suggested that 52 

the comparison of relevant translational models should include age-matched conditions to 53 

avoid further confounding factors. 54 

https://doi.org/10.17533/udea.rccp.357017
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 57 

Resumen 58 

 59 

Antecedentes: El uso de diferentes especies animales para el cultivo de condrocitos se ha 60 

empleado para investigar las enfermedades que afectan al cartílago, incluida la osteoartritis. 61 

El cartílago bovino y los condrocitos se pueden utilizar para establecer cultivos celulares 62 

tridimensionales, que ofrecen un modelo in vitro más fiable en comparación con los cultivos 63 

monocapa convencionales. Sin embargo, los condrocitos bovinos en cultivos 64 

tridimensionales no se han implementado ampliamente, perdiendo una fuente potencial de 65 

tejido proveniente de mamíferos, que podrían ser útiles para estudios preclínicos sobre la 66 

osteoartritis. Objetivo: El objetivo del presente artículo fue realizar una revisión exhaustiva 67 

de la literatura científica existente que emplea cultivos tridimensionales de cartílago bovino 68 

para investigar la osteoartritis. Métodos: Se realizó una búsqueda sistemática utilizando las 69 

bases de datos electrónicas PubMed y Scopus, para identificar estudios clínicos utilizando 70 

cultivo celular 3D para la artrosis. Los términos de búsqueda incluyeron: ´3D culture’, ‘3D 71 

cell culture’, ‘bovine cartilage’ y ‘chondrocyte’. Se recolectaron un total de 59 artículos y, 72 

tras la selección, se incluyeron 12 artículos en el análisis final. La evaluación del riesgo de 73 

sesgo se llevó a cabo categorizando cada uno de los estudios como riesgo de sesgo "bajo", 74 

"medio" o "alto". Resultados: Se encontró que en los artículos incluidos en esta revisión 75 

existía una alta variabilidad en los sitios de aislamiento que incluyen las articulaciones del 76 

carpo, del metacarpo y de la rodilla, así como una alta variación en los métodos de cultivo, 77 

utilizando pasajes celulares que van desde el pasaje cero hasta el pasaje nueve. Además, se 78 

detectó un riesgo medio y alto de sesgo en todos los artículos, probablemente debido a las 79 

dificultades en la aleatorización y el cegamiento de los estudios. En resumen, esta revisión 80 

examina críticamente el cultivo celular tridimensional para la investigación de trastornos del 81 

cartílago, con un énfasis particular en el cartílago bovino. Conclusiones: Los estudios futuros 82 

que utilicen el cultivo de condrocitos en 3D o construcciones de ingeniería de tejidos deben 83 

incluir métodos coherentes en toda la fase in vitro del estudio. Factores como el lugar de 84 

recolección de condrocitos, la edad del donante y el número de deposiciones pueden afectar 85 
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significativamente las características biológicas y el potencial de regeneración del cartílago. 86 

Por lo tanto, se sugiere que la comparación de los modelos traslacionales relevantes debe 87 

incluir condiciones ajustadas a la edad para evitar factores de confusión adicionales. 88 

Palabras clave: cartílago; cultivo celular; cultivo de tejido; hidrogel; obtención de tejido: 89 

osteoartritis; riesgo de sesgo; tejidos musculoesqueléticos. 90 

 91 

Resumo 92 

 93 

Antecedentes: O uso de diferentes espécies animais para a cultura de condrócitos tem sido 94 

empregado para pesquisar doenças que afetam a cartilagem, incluindo osteoartrite. 95 

Cartilagem bovina e condrócitos podem ser usados para estabelecer culturas de células 96 

tridimensionais, que oferecem um modelo in vitro mais confiável em comparação com 97 

culturas convencionais de monocamadas. No entanto, condrócitos bovinos em culturas 98 

tridimensionais não foram amplamente implementados, faltando uma fonte potencial de 99 

tecido de mamíferos, o que poderia ser útil para estudos pré-clínicos de osteoartrite. 100 

Objetivo: Consequentemente, nosso objetivo foi realizar uma revisão abrangente da 101 

literatura científica existente empregando culturas tridimensionais de cartilagem bovina para 102 

investigar osteoartrite. Métodos: Foi realizada uma busca sistemática, utilizando as bases de 103 

dados eletrônicas PubMed e Scopus, para identificar estudos clínicos utilizando cultura de 104 

células 3D para osteoartrite. Os termos de pesquisa incluíram: ́ 3D culture’, ‘3D cell culture’, 105 

‘bovine cartilage’ e ‘chondrocyte’. Foram resgatados 59 artigos e, após seleção, 12 artigos 106 

foram incluídos na análise final. A avaliação do risco de viés foi realizada classificando-se 107 

cada um dos estudos em "baixo", "médio" ou "alto" risco de viés. Resultados: Verificamos 108 

que nos artigos incluídos nesta revisão houve alta variabilidade nos sítios de isolamento, 109 

incluindo as articulações do carpo, metacarpo e joelho, bem como alta variação nos métodos 110 

de cultura, utilizando passagens celulares que variam da passagem zero à passagem nove. 111 

Além disso, detectamos um risco médio e alto de viés em todos os artigos, provavelmente 112 

devido a dificuldades de randomização e cegamento dos estudos. Em resumo, esta revisão 113 

examina criticamente a cultura de células tridimensionais para a pesquisa de distúrbios da 114 

cartilagem, com ênfase particular na cartilagem bovina. Conclusões: Estudos futuros usando 115 

cultura de condrócitos em construções 3D ou de engenharia de tecidos devem incluir métodos 116 
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consistentes em toda a fase in vitro do estudo. Fatores como lugar de coleta dos condrócitos, 117 

idade do doador e número de passagens podem afetar significativamente as características 118 

biológicas e o potencial de regeneração da cartilagem. Portanto, sugere-se que a comparação 119 

de modelos translacionais relevantes inclua condições pareadas por idade para evitar 120 

variáveis de confusão adicionais. 121 

Palavras-chave: cartilagem; colheita de tecidos; cultura celular; hidrogel; obtenção de 122 

tecidos; osteoartrite; risco de viés; tecidos musculoesqueléticos. 123 

 124 

Introduction 125 

Musculoskeletal disorders rank highly as one of the most prevalent causes of physical 126 

disabilities worldwide (Li et al., 2021). Approximately 1.71 billion individuals suffer from 127 

conditions associated with the musculoskeletal system, encompassing ailments such as 128 

arthritis (including osteoarthritis, rheumatoid arthritis, and psoriatic arthritis), gout, and 129 

osteopenia (WHO, 2022). Osteoarthritis (OA) is characterized by cartilage degradation 130 

caused by dysregulated anabolic and catabolic responses affecting normal chondrocyte 131 

biological cues.  132 

Traditionally, monolayer (2D) chondrocyte culture has been used in vitro to study cellular 133 

and pharmacological interactions with candidate molecules. However, 2D culture models, 134 

exhibit a limited representation of the in vivo environment mainly due to inadequate cell-cell 135 

and cell-extracellular matrix interactions, which are crucial for maintaining chondrocyte 136 

phenotype (Fiederlein and Evans, 2020). Three-dimensional (3D) culture provides a better 137 

model of the In Vivo milieu compared to 2D culture, allowing for a deeper understanding of 138 

OA progression.  139 

Chondrocytes and other cell types can be cultured in 3D to mimic the In Vivo environment 140 

while maintaining phenotypic characteristics closely related to the native tissue. Nonetheless, 141 

the substantial array of alternatives for modeling OA, involves different cell sources obtained 142 

from distinct animal species, mainly mammals. Common cell sources comprise those 143 

obtained from common laboratory animal species such as rodents and rabbits, that, although 144 
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it has demonstrated importance for orthopaedic research,  may have important biological and 145 

morphological limitations (Meng et al., 2020; Cardona-Ramirez et al., 2022). Additionally, 146 

tissues obtained from larger animals such as dogs, and sheep have also been used, revealing 147 

important morphological similarities to the human species (Mancuso et al., 2010; Oh et al., 148 

2021; Soontararak et al., 2022). However, due to different ethical and cultural concerns, the 149 

aforementioned species may not be widely available for investigators with an interest in 150 

cartilage diseases (Liguori et al., 2017; Swatland, 2010). Conversely, bovine meat and milk 151 

industry has led to a wide offer of products for human consumption. Moreover, 152 

slaughterhouses also process a considerable quantity of tissues that may be of interest for the 153 

academia and the scientific industry, arising as a potential source of tissues and organs to 154 

study diverse musculoskeletal diseases including the potential effect of orthobiologics and 155 

cartilage preservation strategies (Camacho and Mardones, 2021; Solanki et al., 2021). 156 

Additionally, the bovine species represents an attractive model to study OA due to the 157 

similarity in cartilage thickness and anatomy (Bascuñán et al., 2019). Therefore, the objective 158 

of this paper is to systematically analyze most recent publications using bovine chondrocytes 159 

as a source of cellular material for OA studies. 160 

 161 

Materials and Methods 162 

 163 

Search strategy 164 

This systematic review followed the Preferred Reporting Items for Systematic Reviews and 165 

Meta-Analyses (PRISMA) statement (Page et al., 2021). The computer-assisted literature 166 

search was performed using PubMed and Scopus electronic databases to identify clinical 167 

studies using 3D cell culture for osteoarthritis. The following search terms and Boolean 168 

operators were used: ´3D culture’, ‘3D cell culture’, ‘bovine cartilage’, and ‘chondrocyte’ 169 

(Table 1). Databases were exported to bibliographic manager software files (.RIS) containing 170 

all relevant information such as author name, year of publication, title, keywords, and 171 

abstract. Bibliographic files were then imported into R studio (R version 4.1.2), to consolidate 172 

information on one single database. Duplicated references were removed using the package 173 

´litsearchr´ (Grames et al., 2019). The remaining articles were screened by two authors 174 
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(M.R.J and M.P.C.) and independently reviewed, the title for relevance and the materials and 175 

methods section to include only articles that used bovine chondrocytes for 3D culture.   176 

 177 

Table 1. Search terms and boolean operators were used for the inclusion of the articles. 178 

Electronic 

database 

Query Results 

PubMed "3D culture" OR "3D cell culture" AND 

bovine cartilage OR chondrocyte 

20 

Scopus "3D culture" OR "3D cell culture" AND 

bovine cartilage OR chondrocyte 

39 

 179 

Study risk of bias assessment 180 

The risk of bias assessment was conducted using the Quality Assessment Tool For in vitro 181 

Studies (QUIN) (Sheth et al., 2022). Briefly, the assessment of the quality used a predefined 182 

set of bias domains. The final assessment involved categorizing each of these study features 183 

as having a 'low,' 'medium,' or 'high' risk of bias. Two investigators (M.P.C. and M.R.J) 184 

independently conducted the assessment. 185 

Results 186 

Study selection and characteristics 187 

A total of 59 studies were identified; 17 records were removed due to duplication, and 24 188 

were removed because their title suggested that information was not relevant for analysis. 189 

During the screening process, three (3) records were excluded because chondrocytes were 190 

not obtained from bovine tissues, and one (1) record was not accessible for retrieval. Two (2) 191 

records were excluded because the methodology did not include cell culture details. Lastly, 192 

a total of 12 articles were included in the analysis (Figure 1).  193 

 194 
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 195 

 Figure 1. Identification and study selection according to the PRISMA guidelines. 196 

 197 

Cartilage harvest and chondrocyte culture 198 

Chondrocyte sources varied significantly among studies. While a variety of studies used adult 199 

chondrocytes, other studies utilized chondrocytes obtained from skeletally immature animals 200 

ranging from nine-week-old calves to twelve-old month steers (Ahmed et al., 2014; Çelik et 201 

al., 2016; Li et al., 2016; Lee et al., 2019; Antunes et al., 2020; Gawri et al., 2022). 202 

Additionally, the site of harvest was not consistently described at the time of procurement. 203 

While the most common site of harvest was the carpal-metacarpal joint, other authors used 204 

the stifle (knee) and the fetlock joint (Lee et al., 2017; Lee et al., 2019; Antunes et al., 2020). 205 

Furthermore, there was also variation in the chondrocyte passage used for the experiments. 206 

Although most authors used a variety of passages, ranging from P0 to P4, others studies 207 
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included chondrocyte passages ranging from P4 to P9 (Pizzolatti et al., 2018). Furthermore, 208 

many studies, did not mention what passages were used for the experiments (Table 2). 209 

Table 2. Chondrocyte culture characteristics 210 

Passage number; N.A: Not available 211 

 212 

Risk of bias assessment 213 

The Quality Assessment Tool For in vitro Studies (QUIN Tool) analyzed 12 criteria to grade 214 

the in vitro studies as high, medium, or low risk depending on the summed scores (Sheth et 215 

Reference Chondrocyte culture Passage 

Heywood et al. (2022) Adult metacarpophalangeal cartilage P0-P4 

Gawri et al. (2022) Metacarpal‐carpal cartilage from 9 to 12‐

month‐old steers. 

N. A 

Antunes et al. (2020) Full-thickness fetlock joint 

cartilage of 4-8-month-old calves. 

N. A 

Müller et al. (2020) Chondrocytes isolated from the metacarpal 

joint of 1-2-year-old cattle. 

P1 

Pizzolatti et al. (2018) Bovine carpal joints P4-P9 

Li et al. (2016) Chondrocytes were isolated from articular 

cartilage from the knees of a nine-week-old 

calf. 

P2 

Çelik et al. (2016) Cartilage isolated from the knee joint of young 

calves. 

N.A. 

Mellor et al. (2014) Hooves from 18–24-month-old steers using the 

metacarpophalangeal joints. 

P2 

Farnsworth et al. (2014) Metacarpophalangeal joints of 2–3-year-old 

steers. 

N. A 

Ahmed et al. (2014) Cartilage harvested from bovine metacarpo-

phalangeal joints (6–9 months old). 

P2 

Lee et al. (2017) Cartilage harvested from the patellofemoral 

groove of a bovine leg. 

N. A 
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al., 2022). The first criteria which consisted of the clarity of the objectives, was adequately 216 

specified in all the articles (Table 3). However, all the other categories showed different 217 

grades of bias. Six (6) studies included in the analysis exhibited a high risk of bias according 218 

to the QUIN tool assessment (Çelik et al., 2016; Li et al., 2016; Pizzolatti et al., 2018; Lee 219 

et al., 2019; Antunes et al., 2020; Heywood et al., 2022). Criteria that were more prone to 220 

the risk of bias were the operator details, randomization, outcome assessor details, and 221 

blinding. Moreover, sample size was not adequately described in seven articles (Farnsworth 222 

et al., 2014; Li et al., 2016; Lee et al., 2019; Antunes et al., 2020; Müller et al., 2020; Gawri 223 

et al., 2022; Heywood et al., 2022) and only one study included a detailed explanation of 224 

sample size calculation (Lee et al., 2017). Conversely, seven articles provided a detailed 225 

description of the comparison groups (Ahmed et al., 2014; Farnsworth et al., 2014; Mellor 226 

et al., 2014; Çelik et al., 2016; Lee et al., 2017; Gawri et al., 2022; Müller et al., 2020), six 227 

papers included a detailed description of the methodology (Ahmed et al., 2014; Farnsworth 228 

et al., 2014; Mellor et al., 2014; Li et al., 2016; Lee et al., 2017; Gawri et al., 2022), and only 229 

three articles provided a clear description of the sampling technique (Ahmed et al., 2014; 230 

Mellor et al., 2014; Gawri et al., 2022). 231 

 232 

 233 
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Table 3. Risk of bias assessment using QUIN tool (Sheth et al., 2022). 234 

Ref. Aims Sample 

size 

Sampling 

technique 

Comp. 

group 

Methods Operator 

details 

Rand. Outcome 

measure 

Outcome 

assessor 

Blind Statist Result Total 

score 

Final 

score % 

Risk of 

bias 

Heywood et al. 

(2022) 

2 1 1 1 1 0 0 1 0 0 2 2 11 45.8 High 

Gawri et al. (2022) 2 1 2 2 2 0 0 1 0 0 2 2 14 58.3 Medium 

Antunes et al. (2020) 2 1 0 1 1 0 0 2 0 0 1 1 9 37.5 High 

Lee et al. (2019) 2 1 0 1 1 0 0 2 0 0 2 2 11 45.8 High 

Müller et al. (2020) 2 1 1 2 1 0 1 2 0 1 1 1 13 54.2 Medium 

Pizzolatti et al. 

(2018) 

2 0 0 1 1 0 0 1 0 0 1 2 8 33.3 High 

Li et al. (2016)  2 1 0 0 2 0 0 2 0 0 1 2 10 41.7 High 

Çelik et al. (2016) 2 0 0 2 1 0 0 1 0 0 2 1 9 37.5 High 

Mellor et al. (2014) 2 0 2 2 2 0 0 1 2 0 1 2 14 58.3 Medium 

Farnsworth et al. 

(2014) 

2 1 1 2 2 0 1 2 0 0 2 2 15 62.5 Medium 

Ahmed et al. (2014) 2 0 2 2 2 0 0 2 0 0 2 2 14 58.3 Medium 

Lee et al. (2017) 2 2 0 2 2 0 0 2 0 0 2 2 14 58.3 Medium 

0 = Not Specified; 1 = Inadequately specified; 2 = Adequately specified 235 

Aims: Clearly stated aims/objectives; Sample size: Detailed explanation of sample size calculation; Sampling technique: Detailed 236 

explanation of sampling technique; Comp. group: Details of comparison group; Methods: Detailed explanation of methodology; Rand: 237 

Randomization; Outcome measure: Method of measurement of outcome; Outcome assessor: Outcome assessor details; Blind: 238 

Blinding; Statist: Statistical analysis; Result: Presentation of results.  239 
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Discussion 240 

  241 

Cellular sources for in vitro evaluation of musculoskeletal tissues vary depending on the 242 

intended application, either for basic science or translational purposes. Furthermore, animal 243 

tissues may offer advantages to human cell lines mainly by reducing costs and facilitating 244 

the availability for researchers with an interest in cartilage diseases.  245 

In vitro pre-clinical research plays a crucial role in the development of new materials and 246 

techniques, providing essential information for further testing in clinical trials. Chondrocyte 247 

harvest site and age of donor may affect biological characteristics of studies. In the current 248 

study, variation of the harvest site ranged from carpus, metacarpus, and the knees from both, 249 

adult and young animals.  Isogai et al. (2006) compared bovine chondrocytes from different 250 

animal locations for tissue-engineered cartilage modeling and found that chondrocytes from 251 

different sources showed variations in cell proliferation rates, gene expression, and 252 

extracellular matrix production (Isogai et al., 2006). Interestingly, authors found that 253 

Collagen-I and Aggrecan relative gene expression was highest in costal chondrocytes 254 

compared to chondrocytes isolated from articular cartilage. Similarly, Maličev et al. (2011) 255 

evaluated cell viability, proliferation, morphology, and collagen expression from 256 

chondrocytes harvested from the debrided edge of a chronic lesion of the articular surface 257 

compared to the edge of the lesion.  Authors found differential expression and cell yield 258 

between the two harvest sites and suggested that cultivation of chondrocytes solely from the 259 

edges of the lesion cannot be recommended for use in autologous chondrocyte implantation 260 

(Maličev et al., 2011).  Hence, confirming the importance of considering the specific 261 

characteristics of chondrocyte types in the design of tissue-engineered cartilage models. 262 

 263 

Different studies analyzing the effect of chondrocyte passages on cartilage formation have 264 

found that serial cell passages can cause loss of differentiated phenotype (Brodkin et al., 265 

2004; Hamilton et al., 2005; Kang et al., 2007). Kang et al. (2007) found that chondrocytes 266 

cultured through various passages showed decreased growth rate, viability, and increased 267 

apoptosis. Additionally, authors also showed that passage 2 chondrocytes expressed high 268 

levels of collagen type II, while passage 5 chondrocytes showed dedifferentiation with low 269 

collagen type II expression. Furthermore, when using chondrocytes for 3D culture or tissue 270 
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engineered constructs, using passage 1 chondrocytes exhibited mature cartilage while tissues 271 

engineered with passage 5 chondrocytes did not have chondrocyte morphology or cartilage-272 

specific matrices (Kang et al., 2007). Similarly, Nam et al. (2014) compared the effects of 273 

cryopreservation and passaging on cell viability, proliferation of chondrocytes and 274 

synovium-derived mesenchymal stem cells (MSCs) used as sources for Autologous 275 

Chondrocyte Transplantation (ACT). Authors found that passaging and cryopreservation 276 

significantly affected the ability of chondrocytes to maintain their morphology, express 277 

chondrogenic genes, and differentiate compared to synovium-derived cells that were not 278 

affected by passaging and cryopreservation (Nam et al., 2014).  279 

 280 

Moreover, age of donor is also an important factor on ECM production capability. Son and 281 

Levenston (2015) evaluated phenotypic changes of juvenile and adult articular chondrocytes 282 

and fibrochondrocytes across multiple passages and subsequent 3D culture and found that 283 

Col-1 expression increased with passage for adult cells, but decreased for juvenile cells, and 284 

3D gel culture reversed this increase for adult cells (Son and Levenston, 2017). Therefore, 285 

beside considering factors such as place of harvest, chondrocyte passage and age of donor, 286 

using cell therapy for surgical treatments may require additional experimental conditions to 287 

direct cell phenotype, such as the use of growth factors in the culture medium various cell 288 

sources for tissue-engineering strategies. 289 

 290 

When analyzing the summed scores for risk of bias, we found that most papers reached a 291 

grade of medium or high risk of bias, probably due to lack of complete description of 292 

procedures, specifically in the randomization and blinding criteria, leading to poor grade on 293 

the risk of bias assessment tool. Whether the grading instructions for each criterion on the 294 

assessment tool were clear is still not known. It would be worth to compare different grading 295 

strategies to see which of those may achieve the better consensus. Consequently, various 296 

authors have developed different guidelines for reporting in vitro studies based on the 297 

CONSORT checklist for reporting randomized clinical trials (Faggion, 2012; Krithikadatta 298 

et al., 2014). Additionally, good standards for reporting preclinical research are necessary for 299 

improving efficiency and ensuring the reliability of study findings. However, ongoing 300 

refinement of the current risk of bias reporting tools are still needed. The QUIN tool utilized 301 
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in this paper provided adequate information about the descriptions of relevant characteristics 302 

of in vitro studies, including randomization and blinding processes. It is important to note 303 

that the twelve criteria evaluated by the QUIN tool could only tell if the authors of the articles 304 

included such descriptions. 305 

  306 

Importantly, the use of animal tissues for In Vitro studies can enhance the understanding of 307 

cellular behavior in cartilage integration. Research has shown that bioengineered cartilage 308 

derived from bovine chondrocytes can effectively migrate and integrate with native cartilage 309 

when treated with platelet-rich plasma (PRP) (Wu et al., 2022). Furthermore, mechanical 310 

properties of engineered cartilage constructs may be tuned by modifying the osmolarity of 311 

the culture medium (Oswald et al., 2011). Additionally, the expression and secretion of 312 

appropriate extracellular matrix (ECM) may also be affected by the viscosity of the cell 313 

culture medium, showing higher levels of cartilaginous gene expression in lower viscosity 314 

medium (Zheng et al., 2023). Hence, providing evidence of the importance of culture 315 

conditions for mechanical properties of cartilage constructs. 316 

 317 

In conclusion, having examined the most relevant evidence for the use of bovine 318 

chondrocytes in 3D culture, authors suggest future studies to include consistent methods 319 

across the in vitro phase of the study, such as uniform harvest sites (based on previous 320 

molecular analysis of ECM yield), as well as maintaining chondrocyte passages between 321 

passage zero (P0) and passage four (P4) to preserve cellular phenotype, especially for 322 

cartilage transplantation purposes. Furthermore, comparison of relevant translational models 323 

should include age-matched conditions (either pediatric or adult cartilage diseases) to provide 324 

a precise model and avoid further confounding factors.  325 
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