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Abstract 29 

 30 

Background: Monitoring enteric methane (CH4) emissions is crucial for identifying animals 31 

with lower emissions in selection programs and to measure the effectiveness of emission 32 

reduction strategies. Current methods are often expensive and complex, limiting their 33 

widespread application. Objective: This study aimed to develop and test a low-cost, automated 34 
1system for individualized monitoring of CH4 emissions in dairy cows. Methods: The system 35 

device based on the MQ-4 gas sensor complemented by a 2 L/min airflow system, and an animal 36 

identification module utilizing artificial intelligence. The CH4 data were wirelessly transmitted  37 

via an ESP8266 module to a laptop for storage. CH4 concentrations were recorded three times 38 

per second, and precise timestamps were used to document cow entry and exit from the milking 39 

stall. For the animal identification module, video frames of 26 cows during milking were 40 

extracted and organized into individual folders for each cow. Four versions (s, n, m, and l) of 41 

the Yolov8 and Yolov10 models were fine-tuned and evaluated using a dataset divided into 42 

training, validation, and testing sets. Performance metrics included Precision, Recall, F1-Score, 43 

and Accuracy. The CH4 concentration system was tested with 10 Holstein cows during their 44 

milking sessions. Results: The prototypes successfully measured and recorded CH4 emissions 45 

from individual cows. Continuous recording allowed for detailed time-series graphs, showing 46 

fluctuations in emissions. Some cows exhibited the highest average CH4 emission level, 47 

demonstrating the device's ability to identify high-emitting individuals. Baseline CH4 48 

concentrations in the feeder area were stable across cows, ensuring accurate emission 49 

measurements. The identification module's comparative analysis highlighted the Yolov8n 50 

model as the optimal choice due to its balance between low latency (24 ms) and high 51 

performance, achieving perfect scores in precision, recall, F1-score, and accuracy. 52 

Conclusions: The developed system effectively monitors CH4 emissions in dairy cows, 53 

offering a practical and economical alternative to traditional methods. The use of low-cost 54 

sensors and advanced artificial intelligence enhances its potential for genetic improvement 55 

programs and sustainable livestock management practices. 56 
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 59 

Resumen 60 

 61 

Antecedentes: El monitoreo de las emisiones de metano entérico (CH4) es crucial para 62 

identificar animales con menores emisiones en programas de selección y para medir la 63 

efectividad de las estrategias de reducción de emisiones. Los métodos actuales suelen ser 64 

costosos y complejos, lo que limita su aplicación generalizada. Objetivo: Este estudio tuvo 65 

como objetivo desarrollar y probar un sistema automatizado y de bajo costo para el monitoreo 66 

individualizado de las emisiones de CH4 en vacas lecheras. Métodos: El sistema comprende un 67 

dispositivo de medición de la concentración de CH4 basado en el sensor de gas MQ-4, 68 

complementado con un sistema de flujo de aire de 2 L/min, y un módulo de identificación de 69 

animales que utiliza inteligencia artificial. Los datos de CH4 se transmitieron de forma 70 

inalámbrica a través de un módulo ESP8266 a una laptop para su almacenamiento. Las 71 

concentraciones de CH4 se registraron tres veces por segundo, y se utilizaron marcas de tiempo 72 

precisas para documentar la entrada y salida de las vacas del puesto de ordeño. Para el módulo 73 

de identificación de animales, se extrajeron fotogramas de video de 26 vacas durante el ordeño 74 

y se organizaron en carpetas individuales para cada vaca. Se ajustaron y evaluaron cuatro 75 

versiones (s, n, m y l) de los modelos Yolov8 y Yolov10 utilizando un conjunto de datos 76 

dividido en conjuntos de entrenamiento, validación y prueba. Las métricas de rendimiento 77 

incluyeron Precisión, Recall, F1-Score y Exactitud. El sistema de medición de la concentración 78 

de CH4 se probó con 10 vacas Holstein durante sus sesiones de ordeño. Resultados: Los 79 

prototipos midieron y registraron con éxito las emisiones de CH4 de vacas individuales. El 80 

registro continuo permitió la creación de gráficos de series temporales detallados, mostrando 81 

fluctuaciones en las emisiones. Algunas vacas presentaron los niveles más altos de emisión 82 

promedio de CH4, demostrando la capacidad del dispositivo para identificar individuos con 83 

altas emisiones. Las concentraciones base de CH4 en el área de alimentación fueron estables 84 

entre las vacas, lo que aseguró mediciones precisas de las emisiones. El análisis comparativo 85 

del módulo de identificación destacó el modelo Yolov8n como la opción óptima debido a su 86 

equilibrio entre baja latencia (24 ms) y alto rendimiento, logrando puntuaciones perfectas en 87 

precisión, recall, F1-Score y exactitud. Conclusiones: El sistema desarrollado monitorea 88 

eficazmente las emisiones de CH4 en vacas lecheras, ofreciendo una alternativa práctica y 89 



 

 

 
 

 

económica a los métodos tradicionales. El uso de sensores de bajo costo y la inteligencia 90 

artificial avanzada mejora su potencial para programas de mejora genética y prácticas 91 

sostenibles de manejo ganadero. 92 

 93 
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computadora. 96 
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Resumo 98 

 99 

Antecedentes: O monitoramento das emissões de metano entérico (CH4) é crucial para 100 

identificar animais com menores emissões em programas de seleção e para medir a eficácia das 101 

estratégias de redução de emissões. Os métodos atuais costumam ser caros e complexos, 102 

limitando sua aplicação em larga escala. Objetivo: Este estudo teve como objetivo desenvolver 103 

e testar um sistema automatizado e de baixo custo para o monitoramento individualizado das 104 

emissões de CH4 em vacas leiteiras. Métodos: O sistema é composto por um dispositivo de 105 

medição da concentração de CH4 baseado no sensor de gás MQ-4, complementado por um 106 

sistema de fluxo de ar de 2 L/min, e um módulo de identificação de animais utilizando 107 

inteligência artificial. Os dados de CH4 foram transmitidos sem fio por meio de um módulo 108 

ESP8266 para um laptop para armazenamento. As concentrações de CH4 foram registradas três 109 

vezes por segundo, e carimbos de tempo precisos foram usados para documentar a entrada e 110 

saída das vacas no local de ordenha. Para o módulo de identificação de animais, foram extraídos 111 

quadros de vídeo de 26 vacas durante a ordenha e organizados em pastas individuais para cada 112 

vaca. Quatro versões (s, n, m e l) dos modelos Yolov8 e Yolov10 foram ajustadas e avaliadas 113 

utilizando um conjunto de dados dividido em conjuntos de treinamento, validação e teste. As 114 

métricas de desempenho incluíram Precisão, Recall, F1-Score e Acurácia. O sistema de 115 

medição da concentração de CH4 foi testado com 10 vacas Holstein durante suas sessões de 116 

ordenha. Resultados: Os protótipos mediram e registraram com sucesso as emissões de CH4 117 

de vacas individuais. O registro contínuo permitiu a criação de gráficos de séries temporais 118 

detalhados, mostrando flutuações nas emissões. Algumas vacas apresentaram o maior nível 119 

médio de emissão de CH4, demonstrando a capacidade do dispositivo de identificar indivíduos 120 

com altas emissões. As concentrações de CH4 na área de alimentação foram estáveis entre as 121 

vacas, garantindo medições precisas das emissões. A análise comparativa do módulo de 122 



 

 

 
 

 

identificação destacou o modelo Yolov8n como a escolha ideal devido ao seu equilíbrio entre 123 

baixa latência (24 ms) e alto desempenho, alcançando pontuações perfeitas em precisão, recall, 124 

F1-Score e acurácia. Conclusões: O sistema desenvolvido monitora de forma eficaz as 125 

emissões de CH4 em vacas leiteiras, oferecendo uma alternativa prática e econômica aos 126 

métodos tradicionais. O uso de sensores de baixo custo e inteligência artificial avançada 127 

aumenta seu potencial para programas de melhoramento genético e práticas de manejo 128 

sustentável do gado. 129 

 130 

Palavras-chave: emissões de CH4; inteligência artificial; manejo de gado; metano entérico; 131 

modelo YOLO; monitoramento automático; sensor de gás MQ-4; vacas leiteiras; visão 132 

computacional. 133 

 134 

Introduction 135 

 136 

Climate change is a global concern. This change is driven by greenhouse gas (GHG) emissions 137 

from human activities, among which methane (CH4) plays a significant role because it has a 138 

global warming potential that is 28.5 times greater than that of carbon dioxide (CO₂) over a 139 

100-year period (Bäck et al., 2024). Enteric CH4 emissions significantly contribute to 140 

agricultural GHG emissions. Ruminants contribute approximately 16% of CH4 emissions via 141 

enteric fermentation and an additional 5% from animal waste (Devine and Devine, 2024). 142 

Therefore, the precise quantification of these emissions is necessary for identifying low-143 

emission animals in genetic selection programs and for evaluating the effectiveness of various 144 

mitigation strategies. 145 

 146 

Current methods for measuring enteric CH4 emissions, such as open-circuit respiration 147 

chambers (Pinares and Waghorn, 2014), the GreenFeed system (Zimmerman and Zimmerman, 148 

2012), the SF6 method (Johnson et al., 2007), and laser methane detector (Chagunda et al., 149 

2009) are effective but costly and complex, limiting their widespread application in livestock 150 

production (Tedeschi et al., 2022). As an alternative, the CH4 to CO2 ratio in the breath samples 151 

of cows using systems like the Gasmet DX-4000 (Gasmet Technologies Oy, Helsinki, Finland) 152 

has emerged, offering a practical option for CH4 measurement. However, this approach still 153 

faces implementation challenges, especially in developing countries. This highlights the need 154 

for more accessible and practical methods for monitoring CH4 emissions in livestock 155 



 

 

 
 

 

production. Additionally, it is essential to develop identification systems that accurately assign 156 

emission readings to specific individuals. 157 

 158 

Traditional identification methods include radio frequency identification (RFID) devices 159 

(Kampers et al., 1999). While RFID devices are widely used and effective for individual animal 160 

identification, they represent a significant investment due to the requirement of installing a 161 

passive tag for each animal. This cost is further increased when considering the infrastructure 162 

needed, such as readers and data management systems, particularly in large-scale operations. 163 

Recent advancements in Precision Livestock Farming have highlighted the potential of 164 

integrating RFID with other technologies, such as computer vision (CV). CV is a field of 165 

artificial intelligence that enables computers and systems to interpret the visual content of the 166 

world around them (de Oliveira et al., 2024). Using advanced algorithms and image processing 167 

techniques, computer vision can quickly and accurately identify and classify objects in images 168 

or videos (Wang et al., 2023). CV can serve as a complementary or alternative method, allowing 169 

the identification of multiple animals simultaneously without the need for individual devices. 170 

This approach reduces costs and is less invasive, making it particularly attractive for large herds 171 

(Li et al., 2021). 172 

 173 

The objective of this work was to develop and test a low-cost system for the individualized 174 

monitoring of CH4 emissions in dairy cows, using artificial intelligence for animal identification 175 

and accessible sensors for measuring CH4 concentrations in breath samples. This system aims 176 

to provide a practical and economical alternative to traditional methods, thus facilitating its use 177 

in genetic selection programs and emission mitigation strategies in livestock production. 178 

 179 

Materials and Methods 180 

 181 

The work received ethical approval from the Technical Committee for Animal Experimentation 182 

at the Universidad de Antioquia. This approval is formally documented in Act No. 151, dated 183 

April 11, 2023. 184 

 185 

Figure 1 illustrates the integration of a wireless CH4 measurement device with a computer 186 

vision-based cow identification system. The CH4 sensor transmits data wirelessly via the 187 

ESP8266 module to a central laptop for storage and analysis. Simultaneously, the camera 188 



 

 

 
 

 

captures video, which is processed by a computer vision system to identify individual cows. By 189 

linking CH4 measurements with the identification system, the device ensures the accurate 190 

assignment of emissions to specific cows, supporting individualized monitoring and analysis. 191 

It is important to emphasize that this paper focuses on describing the design and integration of 192 

our device's components rather than conducting an exhaustive calibration or evaluation of its 193 

operational accuracy. Future studies will aim to refine the calibration processes and thoroughly 194 

assess the device's performance in various field conditions to validate its effectiveness and 195 

reliability in real-world applications. 196 

 197 
Figure 1. A schematic representation of the integrated methane measurement and identification 198 

system deployed in a milking stall: A) Air pump, B) Protection box housing electronics, C) Air 199 

sampler, D) Camera for cow identification, and E) A central laptop to receive information via 200 

Wi-Fi from the device. 201 

 202 

CH4 emissions detection module 203 
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A low-cost system was developed for detecting changes in the concentration of CH4 in the air 205 

exhaled by cows during milking, based on the integration of various electronic and mechanical 206 

components (Figure 2), detailed as follows: 207 

1. MQ-4 Gas Sensor: Its sensitivity and specificity allow for measuring CH4 208 

concentrations within the range required for this type of samples (200 to 10000 ppm, Fakra et 209 

al., 2020). We utilized the MQ-4 sensor manufactured by Winsen Electronics Technology Co., 210 

Ltd. 211 

2. Air pump: This was used to generate a constant flow of 2 L/min, ensuring that air from 212 

the feed trough, where cows eat concentrate during milking, is consistently directed toward the 213 

gas sensor inside the device box. 214 

3. Plastic tubing: It channels the air from the collection point (feed trough) to the gas 215 

sensor, minimizing CH4 loss and helping to ensure a representative sample of the exhaled air. 216 

4. ESP8266 module: This module is responsible for collecting and transmitting the data 217 

generated by the gas sensor. It uses a Wi-Fi connection to send the data to a laptop for further 218 

analysis. The ESP8266 module employed in our study is produced by Espressif Systems. This 219 

module integrates a 32-bit Tensilica processor and offers Wi-Fi connectivity, making it suitable 220 

for IoT applications.  221 

5. Protection box: All electronic and mechanical components were placed inside a 222 

protection box to ensure their optimal functioning and protect against physical and 223 

environmental damage. 224 

6. Power source (5V): Provides the necessary voltage to power the MQ-4 Gas Sensor, 225 

ESP8266 module, and air pump. 226 

7. Laptop: Used for data storage. 227 

 228 

 229 



 

 

 
 

 

Figure 2. Components of the methane emissions recording device. ESP8266 module (A), MQ-230 

4 gas sensor (B), air pump (C), and plastic box containing the electronic and mechanical 231 

components (D). The arrows indicate the direction of the air sample flow.  232 

 233 

For the mechanical operation of the system, the air pump generates a constant airflow of 2 234 

L/min, which is directed through a plastic tube from the feed trough to the MQ-4 gas sensor. 235 

This continuous flow allows uninterrupted measurement of CH4 concentrations in the air 236 

exhaled by the cows during milking. For the electronic operation, the CH4 concentration data 237 

detected by the MQ-4 sensor are processed by the ESP8266 module, which wirelessly transmits 238 

them (via WiFi) to a laptop for storage and further analysis. 239 

 240 

The Arduino code for data transmission (Appendix 1) allows the ESP8266 to connect to a Wi-241 

Fi network and send the sensor readings. Initially, the device is configured to operate in station 242 

mode (Wi-Fi client) and connects to the specified network. Once the connection is established, 243 

the code enters a continuous loop where the sensor values are read and sent to the local server 244 

via an HTTP POST request. This mechanism ensures the continuous and real-time transmission 245 

of CH4 data detected during the use of the device. In the laptop, the Python code for receiving 246 

and storing the data sent by the ESP8266 (Appendix 2) is based on the Flask framework 247 

(https://flask.palletsprojects.com/). The Flask server is configured to accept GET and POST 248 

requests at the "/data" route. When a POST request is received, the server extracts the device 249 

ID and sensor readings, records the date and time, and saves this data in a text file on the laptop.  250 

 251 

To test the CH4 emissions recording device, the emissions of 10 dairy cows were monitored 252 

with two prototypes, anticipating the possible malfunction of one of the devices, during milking 253 

(5:00h and 14:00h) at the dairy unit of La Montaña farm, Universidad de Antioquia, located in 254 

the municipality of San Pedro de Los Milagros, Colombia, at an altitude of 2350 meters above 255 

sea level, with an average temperature of 15 °C, and relative humidity of  83%. Variations in 256 

CH4 concentration were recorded three times per second in a text file for each prototype during 257 

milking. An observer noted the exact time of entry and exit of each cow from the milking stall, 258 

and this information was used to organize the detections by cow and milking session. 259 

 260 

During the trials, cows entered the milking stall and feeding area at their usual milking times, 261 

as part of their daily routine. Each cow remained at the feeder for several minutes, depending 262 

https://flask.palletsprojects.com/


 

 

 
 

 

on milk production, which determined the overall milking duration. This allowed the device to 263 

record CH4 emissions continuously during their stay. Between consecutive cows, there was a 264 

natural pause in visits to the milking stall. During this interval, the continuous airflow 265 

maintained by the air pump helped to remove any residual CH4 from the sampling system, 266 

ensuring that emissions from a previous cow did not persist in the measurement area. Although 267 

some residual methane could potentially influence the baseline concentration, this aspect was 268 

not the focus of the current study. As mentioned, the primary purpose at this stage was to 269 

demonstrate the device’s design and integration, rather than to provide fully corrected emission 270 

data. 271 

 272 

In the current design phase, the baseline CH4 concentration in the feeder area was treated as a 273 

conceptual reference point rather than a rigorously established measurement. The system’s 274 

approach assumes that, under normal operating conditions, the feeder area maintains a relatively 275 

stable ambient CH4 concentration that can serve as a starting level. While factors such as 276 

ventilation, proximity of other animals, and external emissions could influence this baseline, 277 

no separate measurements were taken during cow-absent periods to quantify these variations. 278 

Similarly, the airflow provided by the pump was assumed to be consistent with the 279 

manufacturer’s nominal specifications (approximately 2 L/min) rather than independently 280 

measured or rigorously verified. At this stage, our priority was to integrate CH4 detection, 281 

wireless data transmission, and computer vision-based identification into a single device, rather 282 

than ensuring fully characterized baseline conditions or meticulously controlled airflow. 283 

Consequently, we cannot confirm that the chosen airflow rate is adequate to reliably capture 284 

subtle variations in CH4 concentrations between individual animals. Future research will 285 

explore strategies to refine all of these assumptions, including dedicated baseline 286 

measurements, improved flow-rate verification, and calibration steps.  287 

 288 

Identification module 289 

 290 

For the animals identification module, a computer vision system based on YOLO (You Only 291 

Look Once, Redmon et al., 2016) object detection model was used. The process began with 292 

capturing videos of 26 cows entering the milking stall. Due to the camera's position (above the 293 

feed trough), the videos contained exclusively images of a single cow, which facilitated the 294 

labeling process. Each video was labeled with the corresponding cow's name and stored on a 295 



 

 

 
 

 

laptop. From these videos, frames were extracted at a rate of three frames per second. These 296 

frames were saved in individual folders, each corresponding to a specific cow. This 297 

organization allowed for efficient management and easy access to each animal's data. The next 298 

step involved processing these frames using the Yolov8m model, pre-trained by Ultralytics 299 

(https://www.ultralytics.com/). This model is capable of detecting cows, horses, and other 300 

animals, facilitating the precise identification of cows in the frames. 301 

 302 

The Yolov8m model was used to analyze each frame and provided the coordinates of the area 303 

where the cow was found. The information obtained from the YOLO analysis was saved in text 304 

files using the YOLO format. This format is widely used in computer vision applications and 305 

is characterized by its simplicity and efficiency. Each line in a YOLO annotation file represents 306 

an object detected in the image and follows the structure: 'class_id center_x center_y width 307 

height,' where 'class_id' is the identifier of the detected object's class (in this case, cow), 308 

'center_x' and 'center_y' are the coordinates of the center of the bounding box around the object, 309 

normalized between 0 and 1, while 'width' and 'height' are the width and height of the bounding 310 

box, also normalized between 0 and 1. These annotations allow the location and size of each 311 

cow to be represented in the frames. The cows' names were alphabetically ordered and 312 

converted into numbers (between 0 and 25) to assign labels ('class_id') in the text files. 313 

 314 

The fine-tuning process of the YOLO models began with the organization and division of the 315 

data (500 images) into three sets: 70% for training, 10% for validation, and 20% for testing. 316 

When fine-tuning a YOLO model, the training set of images is used by the model to learn object 317 

features and patterns. The model updates its parameters based on these images and their 318 

annotations. The validation set is used during training to monitor performance and prevent 319 

overfitting. The model does not learn from these images; instead, it uses them to fine-tune 320 

hyperparameters and decide when to stop training. While the testing set is reserved for the final 321 

evaluation. These images are never seen during training or validation, ensuring an unbiased 322 

measure of the model’s real-world performance. 323 

 324 

In this study, the YOLO-based identification was tested using video frames containing only one 325 

cow at a time. This was due to the camera’s placement directly above the feed trough, which 326 

naturally restricted the field of view to a single animal per image. However, YOLO is 327 

fundamentally designed for multi-object detection and, in principle, can identify several cows 328 

https://www.ultralytics.com/


 

 

 
 

 

simultaneously. In real-world scenarios where multiple cows appear in the same frame, the 329 

visiting cow can be determined by selecting the largest detected bounding box, representing the 330 

animal closest to the camera and presumably the one currently at the milking stall. 331 

 332 

The n, s, m, and l versions of the Yolov8 and Yolov10 models, pre-trained by Ultralytics and 333 

THU-MIG (https://github.com/THU-MIG), respectively, were selected to perform the fine 334 

tuning with the images of the dairy cows. The training process involved the following steps: 335 

The model configuration specified the number of epochs (1000), image size (640 pixels), and 336 

batch size (8 images per iteration). During training, the model adjusted its parameters to 337 

optimize detection accuracy, using the training and validation datasets to evaluate its 338 

performance and avoid overfitting. A patience criterion was set, so if no significant 339 

improvements in model accuracy were observed during 50 consecutive epochs, the training 340 

would automatically stop to avoid overfitting and optimize the use of computational resources. 341 

 342 

After completing the training process, the fine-tuned models were evaluated using the testing 343 

dataset. The performance metrics included Precision, Recall, F1-Score, and Accuracy. Each of 344 

these metrics offers a distinct and complementary perspective on the model's ability to make 345 

accurate predictions. Precision is the proportion of true positive examples out of all examples 346 

predicted as positive, focusing on the correctness of the model's positive predictions. Recall, 347 

also known as sensitivity or the true positive rate, measures the proportion of actual positive 348 

examples that were correctly identified by the model, emphasizing the model's ability to capture 349 

all relevant positive instances. The F1-Score is the harmonic mean of Precision and Recall, 350 

providing a single metric that balances the trade-off between these two aspects, especially in 351 

scenarios where both are equally important. Accuracy is the proportion of all correctly classified 352 

examples, both positive and negative, out of the total number of evaluated examples (Sokolova 353 

and Lapalme, 2009). 354 

 355 

Results 356 

 357 

CH4 emissions detection module 358 

 359 

The developed CH4 emissions detection module successfully generated continuous data on the 360 

CH4 concentration in the air exhaled by dairy cows during milking. The data were recorded in 361 

https://github.com/THU-MIG


 

 

 
 

 

text files, capturing CH4 concentration values three times per second for each cow throughout 362 

the milking session. By combining this data with precise timestamps of each cow's entry and 363 

exit from the milking stall, it was possible to create detailed time-series graphs illustrating the 364 

fluctuations in CH4 emissions for each animal. 365 

 366 

Figure 3 presents an illustrative example of the type of data generated by the CH4 emissions 367 

recording device. The graph displays the CH4 concentration (in parts per million, ppm) over 368 

time for three cows, identified as Cow 1, Cow 2, and Cow 3. The data reveal a clear pattern: 369 

the CH4 concentration rapidly increases from the baseline level—measured as the concentration 370 

in the feeder area—once the cows begin concentrate intake in the milking station. This baseline 371 

concentration represents the average CH4 level in the feeder area when no cows are present in 372 

the milking station. 373 

 374 
Figure 3. Methane concentration over time for three different cows (Cow 1, Cow 2, and Cow 375 

3), identified by different colors (blue, orange, and green, respectively). The gray segments 376 

represent periods when the CH4 concentration was within the feeder area range (500-655 ppm). 377 

The colored dashed lines indicate the average CH4 concentration for each cow. 378 

 379 

The colored dashed lines in Figure 3 indicate the average CH4 concentration for each cow 380 

during the milking session. Notably, these lines show that Cow 2 exhibited the highest average 381 

CH4 emission level compared to the other cows. This observation is important as it suggests 382 

that Cow 2 may be a higher emitter of CH4 under the conditions of this test. In addition to 383 



 

 

 
 

 

identifying the highest emitter, the data also allow for a comparison of emission patterns 384 

between the cows. For example, Cow 1 and Cow 3 demonstrated different emission profiles, 385 

with variations in both the amplitude and frequency of their CH4 concentration peaks. The CH4 386 

concentration in the feeder area, represented by the black dashed line in Figure 3, serves as a 387 

crucial reference point for understanding the emission dynamics. This baseline provides a 388 

consistent metric against which the increases in CH4 concentration during active feeding can 389 

be measured. However, ensuring measurement reliability and consistency involves several 390 

critical steps, including comparison with validated reference methods, evaluation of systematic 391 

and random errors, repeatability under identical conditions, and consistency across different 392 

individuals (Bartlett and Frost, 2008). In the current study, our primary focus was on the design 393 

and integration of the CH4 measurement device. While we have successfully demonstrated the 394 

device's capability to detect and record CH4 concentrations, a comprehensive evaluation of its 395 

reliability and consistency is beyond the scope of this paper. 396 

The results demonstrate the effectiveness of the CH4 emissions detection device in monitoring 397 

CH4 emissions from dairy cows during milking. The device was able to capture detailed 398 

emission profiles for individual cows, highlighting differences in CH4 output that could be 399 

important for understanding and managing CH4 emissions in dairy farming. The ability to 400 

identify high-emitting cows, like Cow 2 in this example, offers valuable insights that could 401 

inform targeted interventions to reduce overall CH4 emissions in dairy herds. 402 

 403 

Identification module 404 

 405 

Table 1 provides a comparative analysis of the YOLO models, evaluating their performance 406 

based on the number of training epochs required to achieve optimal results, latency, precision, 407 

recall, F1-score, and accuracy. All evaluations were conducted on an x86_64 machine equipped 408 

with an Intel® Xeon® CPU (2.00 GHz, 2 threads) and a single NVIDIA Tesla T4 GPU with 409 

15 GB of memory. The Yolov8n model achieved maximum performance with perfect values 410 

in Precision, Recall, F1-score, and Accuracy (1.00) on both the validation and testing datasets, 411 

with a low latency of 24 ms. This indicates that Yolov8n offers both excellent accuracy and 412 

speed. The Yolov8s, Yolov8m, and Yolov8l models also performed well but had slightly lower 413 

performance metrics compared to Yolov8n. Specifically, the Yolov8s model achieved 414 

Precision, Recall, F1-score, and Accuracy values ranging from 0.98 to 0.99, with the same 415 

latency of 24 ms as Yolov8n. Yolov8m and Yolov8l had marginally higher latencies (36 ms 416 



 

 

 
 

 

and 39 ms, respectively) without significant improvements in performance metrics. The 417 

Yolov10 series models also demonstrated high performance. For instance, Yolov10l achieved 418 

perfect scores in all metrics (1.00) on both validation and testing datasets but had a higher 419 

latency of 37 ms. Other Yolov10 models showed near-perfect performance with slightly varied 420 

latencies. Considering both performance and latency, the fine-tuned Yolov8n model emerges 421 

as the best option. It offers perfect performance metrics with the lowest latency among the 422 

models tested, making it highly suitable for the identification of individual cows within the 423 

images used in this study.  424 

 425 



 

 

 
 

 

Table 1. Performance and latency comparison of fine-tuned Yolov8 and Yolov10 models on validation and testing datasets 426 

Model Epochs1  Latency2  Precision  Recall  F1-Score  Accuracy 

 Training  Testing  Validation Testing  Validation Testing  Validation Testing  Validation Testing 

Yolov8n 116  24  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Yolov8s 35  24  0.99 0.99  0.99 0.98  0.99 0.99  0.99 0.99 

Yolov8m 156  36  0.99 0.98  0.99 0.98  0.99 0.98  0.99 0.98 

Yolov8l 83  39  0.99 0.99  0.99 0.99  0.99 0.99  0.99 0.99 

Yolov10n 292  25  1.00 0.99  1.00 0.99  1.00 0.99  1.00 0.99 

Yolov10s 120  26  0.99 1.00  1.00 0.99  1.00 1.00  1.00 1.00 

Yolov10m 131  35  0.99 1.00  0.99 1.00  0.99 1.00  0.99 1.00 

Yolov10l 164  37  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

1Epochs refer to the total number of training iterations completed. Training was stopped early as no improvement was observed in the last 50 427 

epochs. 428 
2Latency indicates the time (in milliseconds) taken by the fine-tuned models to process a single image from the testing dataset. 429 



 

 

 
 

 

Figure 4 presents examples of dairy cow identification results using the Yolov8n model. All 430 

images from the validation and testing sets achieved high identification performance, each with 431 

a high probability score (≥ 0.98). This consistency demonstrates that the model effectively 432 

identifies each individual cow without confusion or significant variability in performance 433 

across different animals. It can be seen that the models successfully identified the cows with 434 

high precision, highlighting the performance of Yolov8n, which not only correctly identified 435 

the cows but also did so with low latency, which is crucial for real-time applications. The more 436 

advanced models, such as Yolov8m and Yolov8l, despite their slightly higher latency, 437 

maintained flawless detection performance, making them suitable for scenarios where latency 438 

is not critical, but maximum precision is required. On the other hand, the Yolov10 series models 439 

offer solid performance with acceptable latency, positioning themselves as a viable option when 440 

seeking a balance between latency and accuracy. 441 

 442 

The analysis reveals that while all the evaluated models achieved remarkable performance, the 443 

choice of the optimal model will depend on the specific application requirements and the 444 

characteristics of the images used. For real-time applications where latency is a critical factor, 445 

Yolov8n might be preferred despite its slight sacrifice in precision. However, for applications 446 

where precision is of utmost importance, Yolov8n (Figure 4) emerges as the best choice, 447 

combining an ideal balance between performance and latency for the specific set of images 448 

used in this study. 449 

 450 



 

 

 
 

 

 451 
Figure 4.  Example of dairy cow identification results using a fine-tuned Yolov8n model. This figure illustrates the detection and identification of 452 

individual cows as they pass through the milking station. Each cow is enclosed within a color-coded bounding box, labeled with the cow’s name 453 

and the model’s confidence score. These high confidence scores indicate the model's strong certainty in identifying each cow accurately. 454 



 

 

 
 

 

Discussion 455 

 456 

Monitoring enteric CH4 emissions is essential for reducing the environmental impact of 457 

livestock. Traditional methods like open-circuit respiration chambers, the GreenFeed system, 458 

and the SF6 tracer technique, while precise, are costly, complex, and difficult to implement on 459 

a large scale (Huhtanen et al., 2015; Bekele et al., 2022). Alternative methods, such as the sniffer 460 

technique (Garnsworthy et al., 2012), offer greater portability and less invasiveness but suffer 461 

from inconsistencies and lower accuracy. Our developed system attempts to address these 462 

challenges by providing a low-cost, practical, and scalable solution for measuring CH4 463 

emissions in dairy cows. 464 

 465 

Low-cost, portable CH4 quantification system using an MQ-4 sensor has been used for 466 

monitoring in biogas production and environmental studies (Nagahage et al., 2021, Tovar-467 

Sánchez et al., 2023, Negara et al., 2024) and to study the daily dynamic of enteric CH4 468 

emissions in grazing ruminants (Ramirez-Agudelo et al., 2019). The system developed in this 469 

study represents a significant innovation in this area, specifically applied to livestock. By 470 

utilizing a MQ-4 gas sensor and integrating it with an artificial intelligence-based identification 471 

module, the system offers a practical and economical alternative to traditional methods. 472 

However, like the sniffer method, the developed system could potentially face similar 473 

limitations related to sampling inconsistencies and environmental variations. The proximity of 474 

the sensor to the animal's mouth and nose may also introduce some variability in the 475 

measurements, especially if the sensor's position relative to the animal varies during data 476 

collection. Nevertheless, the developed system offers several key advantages that help mitigate 477 

these potential issues.  478 

 479 

The cost-effectiveness, unlike the high costs associated with respiration chambers and the 480 

GreenFeed system, the developed system uses inexpensive sensors and components, making it 481 

accessible for widespread use, including in resource-limited settings. Simplicity and ease of 482 

implementation, because the system is designed for easy integration into existing livestock 483 

management practices, particularly during milking sessions. The use of wireless data 484 

transmission and automated identification reduces the need for manual intervention and allows 485 

for seamless monitoring of multiple animals simultaneously. Scalability, given that the modular 486 

design of the system, combined with its low cost, makes it highly scalable. It can be easily 487 



 

 

 
 

 

adapted to monitor larger herds or implemented in different types of livestock production 488 

systems, expanding its applicability beyond dairy cows. Non-invasive monitoring, unlike the 489 

SF6 tracer technique, the developed system does not require any invasive procedures, ensuring 490 

the well-being of the animals while still providing CH4 data. 491 

 492 

Similar to the methods mentioned above, the baseline CH4 concentration—or background CH4 493 

concentration—is crucial for accurate emissions monitoring. In controlled environments like 494 

respiration chambers, the background CH4 levels are carefully measured and accounted for to 495 

ensure that only the CH4 directly produced by the animal is recorded. The SF6 technique also 496 

relies on establishing a clear background concentration to differentiate between the tracer gas 497 

and actual CH4 emissions. The GreenFeed system similarly uses background measurements to 498 

calibrate its sensors and correct for any ambient CH4 that might be present. In the developed 499 

system, the baseline CH4 concentration in the feeder area serves as a critical reference point, 500 

providing the necessary context for interpreting the CH4 levels emitted by the cows during 501 

feeding and ensuring that the data reflects true enteric emissions rather than environmental 502 

noise. The accuracy of this baseline measurement is crucial because any fluctuations or 503 

inaccuracies could lead to misinterpretations of the subsequent data. For instance, if the baseline 504 

is inaccurately high due to residual CH4 from previous feeding sessions, the system might 505 

underestimate the actual increase in emissions during feeding. 506 

 507 

The behavior of the cows, including their movement during the milking session, can influence 508 

the concentration of CH4 detected by our device. Additionally, the position of the cow relative 509 

to the sensor can result in variability in the measurements, as the detection of the concentration 510 

of CH4 in the exhaled breath can diminish rapidly with distance. The position of the cow relative 511 

to the air sample inlet is particularly critical, as CH4 concentration in air sample can diminish 512 

rapidly with distance. To address this, the developed device incorporates an air pump system 513 

that generates a constant airflow, ensuring that air from the feed trough, where the cows eat 514 

during milking, is consistently directed toward the gas sensor. This setup minimizes the impact 515 

of cow movement and environmental fluctuations by maintaining a steady flow of sampled air 516 

to the sensor, thereby enhancing the accuracy and reliability of the measurements. However, 517 

despite the advantages of the air pump system, careful positioning of the sampling inlet relative 518 

to the cow's nostrils or mouth remains crucial. If the inlet is not consistently aligned, variations 519 

in readings can still occur.  520 



 

 

 
 

 

 521 

Despite the promising capabilities of our developed system, it is important to acknowledge 522 

certain limitations of the current study. One significant limitation is the inability to directly 523 

compare our CH4 emission results with those obtained from studies using established reference 524 

methods, such as open-circuit respiration chambers, the GreenFeed system, or the SF6 tracer 525 

technique. This limitation arises because our device is still in the prototype phase and has not 526 

yet undergone comprehensive calibration against these standard methods. Our primary focus 527 

was on the design, development, and initial testing of a low-cost CH4 measurement device 528 

integrated with an artificial intelligence-based identification system. While we successfully 529 

demonstrated the device's potential for detecting CH4 emissions and identifying individual 530 

cows, the absolute CH4 concentration values recorded may not be directly comparable to those 531 

from validated methods. Without calibration and validation against these reference techniques, 532 

direct comparisons could be misleading or inaccurate. Therefore, our current results serve as a 533 

proof of concept rather than definitive quantitative measurements of CH4 emissions. Future 534 

research will focus on calibrating the MQ-4 sensor against established reference methods and 535 

conducting controlled experiments to validate the device's accuracy.  536 

 537 

The YOLO-based identification module demonstrated exceptional effectiveness in accurately 538 

identifying individual dairy cows during the milking process. The module's performance was 539 

thoroughly evaluated using various YOLO models, including the Yolov8 and Yolov10 series, 540 

each fine-tuned to optimize cow identification. The performance metrics used to assess these 541 

models—Precision, Recall, F1-Score, and Accuracy—indicate the module's high level of 542 

reliability and precision in a practical farm setting. In real-time applications, there is often a 543 

trade-off between the speed (latency) and accuracy of a model. Lower latency is crucial for 544 

applications requiring immediate response, such as real-time monitoring systems. However, 545 

achieving low latency can sometimes compromise the accuracy of the model. Among the 546 

various YOLO models evaluated, the Yolov8n model emerged as the optimal choice for this 547 

study. The Yolov8n's balance of low latency and perfect performance makes it particularly well-548 

suited for applications where both real-time processing and high accuracy are required, such as 549 

monitoring and identifying cows during milking sessions.  550 

 551 

In conclusion, this study successfully developed a low-cost, effective system for monitoring 552 

enteric CH4 emissions in dairy cows, combining the MQ-4 gas sensor with advanced artificial 553 



 

 

 
 

 

intelligence-based identification using YOLO models. The system demonstrated its capability 554 

to accurately detect and record CH4 emissions during milking, providing detailed emission 555 

profiles for individual cows. The Yolov8n model emerged as the optimal choice for cow 556 

identification, offering a perfect balance between accuracy and latency, crucial for real-time 557 

applications. The modular and scalable design of the system ensures its applicability across 558 

various livestock environments, promoting its potential use in genetic selection programs and 559 

emission mitigation strategies. Future enhancements, such as implementing rigorous calibration 560 

protocols, accurately establishing baseline CH4 concentrations, and incorporating additional 561 

environmental sensors, will further improve the system’s precision and reliability, reinforcing 562 

its potential as a practical, cost-effective alternative to traditional CH4 monitoring methods in 563 

livestock management. 564 
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Appendices 686 

 687 

Appendix 1: Arduino code for Real-Time Data Transmission using ESP8266 688 

 689 

This appendix provides the Arduino code used for transmitting data from the ESP8266 module 690 

to a web server. The code initializes the ESP8266 in station mode to connect to a specified WiFi 691 

network, reads sensor data from an analog pin, and sends this data to a server using an HTTP 692 

POST request. The server response is then displayed in the serial monitor, allowing real-time 693 

monitoring of the sensor data transmission. 694 

 695 

// Include the necessary libraries for the ESP8266 WiFi module and HTTP client functionality. 696 

#include <ESP8266WiFi.h> 697 

#include <ESP8266HTTPClient.h> 698 

 699 

// Define the credentials for the WiFi network that the device will connect to. 700 

// Replace the empty strings with your actual WiFi SSID and password. 701 

const char* ssid     = "YOUR_SSID";  702 

const char* password = "YOUR_PASSWORD";  703 

 704 

// Initialize a WiFiClient object to manage network connections. 705 

WiFiClient wifiClient;   706 

 707 

// The setup function runs once when the device is powered on or reset. 708 

void setup() { 709 

  // Start serial communication at a baud rate of 115200 for debugging purposes. 710 

  Serial.begin(115200); 711 

   712 

  // Set the WiFi mode to station (client) mode. 713 

  WiFi.mode(WIFI_STA); 714 

https://patents.justia.com/patent/8307785


 

 

 
 

 

   715 

  // Begin connecting to the specified WiFi network using the provided credentials. 716 

  WiFi.begin(ssid, password); 717 

 718 

  // Continuously check the WiFi connection status until connected. 719 

  while (WiFi.status() != WL_CONNECTED) { 720 

    delay(1000);             // Wait for one second before the next status check. 721 

    Serial.print(".");       // Print a dot to the serial console to indicate ongoing connection attempts. 722 

  } 723 

   724 

  // Once connected, print a confirmation message to the serial console. 725 

  Serial.println("\nWiFi connected"); 726 

  Serial.print("IP Address: "); 727 

  Serial.println(WiFi.localIP());  // Display the assigned IP address. 728 

} 729 

 730 

// The loop function runs repeatedly after setup() has completed. 731 

void loop() { 732 

  // Verify that the device is currently connected to the WiFi network. 733 

  if (WiFi.status() == WL_CONNECTED) {    734 

    // Create an HTTPClient object to handle HTTP requests. 735 

    HTTPClient http;   736 

 737 

    // Define the server URL where the data will be sent. 738 

    // Replace "192.XXX.XX.XXX" with the actual IP address of your Flask server. 739 

    http.begin(wifiClient, "http://192.XXX.XX.XXX:8080/data");   740 

     741 

    // Specify the content type of the HTTP request as form URL encoded. 742 

    http.addHeader("Content-Type", "application/x-www-form-urlencoded"); 743 

 744 

    // Read the analog value from pin A0 where the MQ4 sensor is connected. 745 

    int sensorValue = analogRead(A0);        746 

    Serial.print("Sensor Value: "); 747 



 

 

 
 

 

    Serial.println(sensorValue);  // Output the sensor value to the serial console for debugging. 748 

     749 

    // Construct the POST data string with the device ID and sensor reading. 750 

    // "ESP2" is used here as the device identifier; modify as needed for your setup. 751 

    String postData = "device_id=ESP2&sensor_reading=" + String(sensorValue); 752 

     753 

    // Send the POST request with the sensor data to the server and store the response code. 754 

    int httpCode = http.POST(postData); 755 

 756 

    // Print the HTTP response code to the serial console for debugging. 757 

    Serial.print("HTTP Response Code: "); 758 

    Serial.println(httpCode);  759 

 760 

    // If the request was successful (response code > 0), process the server's response. 761 

    if (httpCode > 0) { 762 

      // Retrieve the response payload from the server. 763 

      String payload = http.getString(); 764 

      // Display the server's response in the serial console. 765 

      Serial.println("Server Response:"); 766 

      Serial.println(payload);              767 

    } else { 768 

      // If the request failed, print an error message with the response code. 769 

      Serial.print("Error on sending POST: "); 770 

      Serial.println(http.errorToString(httpCode).c_str()); 771 

    } 772 

 773 

    // Close the HTTP connection to free resources. 774 

    http.end();   775 

  } else { 776 

    // If the device is not connected to WiFi, print a warning message. 777 

    Serial.println("WiFi not connected"); 778 

  } 779 

 780 



 

 

 
 

 

  // Wait for 250 milliseconds before sending the next sensor reading. 781 

  delay(250);   782 

} 783 

 784 

Appendix 2: Python code for Real-Time Data Reception and Storage using Flask 785 

 786 

This appendix provides the Python code used for receiving and storing data sent by the 787 

ESP8266 module via HTTP POST requests. The code initializes a Flask application that listens 788 

for incoming data on a specified route (/data). Upon receiving the data, the server logs the 789 

methane readings along with a timestamp into a text file.  790 

 791 

from flask import Flask, request 792 

from datetime import datetime 793 

 794 

# Initialize the Flask application 795 

app = Flask(__name__) 796 

 797 

# Global variable to store the name of the last file where data was saved 798 

last_filename = None 799 

 800 

# Define the route '/data' that handles both GET and POST HTTP methods 801 

@app.route('/data', methods=['GET', 'POST']) 802 

def data(): 803 

    global last_filename  # Allow modification of the global variable within this function 804 

 805 

    if request.method == 'POST': 806 

        # Extract 'device_id' and 'sensor_reading' from the incoming form data 807 

        device_id = request.form.get('device_id') 808 

        sensor_reading = request.form.get('sensor_reading') 809 

 810 

        # Validate that both 'device_id' and 'sensor_reading' are provided 811 

        if not device_id or not sensor_reading: 812 



 

 

 
 

 

            return "Missing data in the POST request.", 400  # Return a 400 Bad Request if data is 813 

incomplete 814 

 815 

        # Get the current date and time formatted as 'YYYY-MM-DD HH:MM:SS.ff' 816 

        current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-5] 817 

         818 

        # Format the current time to 'YYYY-MM-DD_HH' for use in the filename 819 

        filename_time = datetime.now().strftime('%Y-%m-%d_%H') 820 

 821 

        # Prepare the content string to be written to the file 822 

        content = f"{device_id},{current_time},{sensor_reading}\n" 823 

 824 

        # Generate the filename using 'device_id' and the formatted current time 825 

        filename = f"{device_id}_{filename_time}.txt" 826 

        last_filename = filename  # Update the global variable with the new filename 827 

 828 

        # Open the file in append mode and write the content 829 

        with open(filename, 'a') as file: 830 

            file.write(content) 831 

 832 

        # Return an HTML response confirming successful data saving, displaying the filename 833 

        return f""" 834 

        <html> 835 

            <body> 836 

                <h1>Success</h1> 837 

                <p>Data has been successfully saved to the file: <strong>{filename}</strong></p> 838 

            </body> 839 

        </html> 840 

        """, 200 841 

 842 

    elif request.method == 'GET': 843 

        # Handle GET requests to provide status information about data logging 844 

        if last_filename: 845 



 

 

 
 

 

            # If data has been previously logged, inform the user 846 

            return f""" 847 

            <html> 848 

                <body> 849 

                    <h1>MQ4 Data Logging Status</h1> 850 

                    <p>Data is currently being saved in the file: 851 

<strong>{last_filename}</strong></p> 852 

                </body> 853 

            </html> 854 

            """, 200 855 

        else: 856 

            # If no data has been logged yet, inform the user accordingly 857 

            return """ 858 

            <html> 859 

                <body> 860 

                    <h1>MQ4 Data Logging Status</h1> 861 

                    <p>No data has been logged yet.</p> 862 

                </body> 863 

            </html> 864 

            """, 200 865 

 866 

# Entry point to run the Flask application 867 

if __name__ == '__main__': 868 

    # Start the Flask development server, accessible externally on port 8080 869 

    app.run(host='0.0.0.0', port=8080) 870 


