Effect of tropical forage species in silvopastoral arrangements on methane production and in vitro fermentation parameters in a RUSITEC system*


Abstract

Background:

Supplementation of grazing cattle with native and naturalized forages using silvopastoral systems has been suggested as an affordable strategy to reduce methane production and improve nutrition, diminishing the environmental impact of cattle production.

Objective:

To evaluate the effect of three tropical forage species in a silvopastoral arrangement on methane production and fermentation parameters using an in vitro ruminal simulation system (RUSITEC).

Methods:

Four diets were evaluated. The control treatment was a basal diet of colosuana grass (COL; Bothriochloa pertusa), while the other diets consisted of 70% COL complemented with 30% shrub forage from either Leucaena leucocephala (CL), Guazuma ulmifolia (CG), or Crescentia cujete (CT). A randomized complete block design with repeated measurements over time was used.

Results:

The inclusion of shrub forage did not affect pH, organic matter degradation (OMD) or volatile fatty acids (VFA). The inclusion of shrub forage affected the degradation of structural components. The concentration of N-NH3 increased in the CL diet compared to COL (p<0.05). In general, methane production in terms of mL/day, mL/g DMi, mL/g DMd, and mL/gOMd was reduced for CL compared to COL (p<0.05).

Conclusions:

Based on these results, inclusion of Leucaena leucocephala, Guazuma ulmifolia or Crescentia cujete on B. pertusa-based diets improves ruminal fermentation parameters and reduces in vitro methane production.

Keywords:

animal adaptation, cattle, climate change, forages, grazing, methane production, rumen fermentation, ruminants, silvopastoral systems, tropical agriculture


Resumen

Antecedentes:

Suplementar ganado en pastoreo con forrajes nativos y naturalizados en sistemas silvopastoriles se ha sugerido como estrategia para reducir la producción de metano y mejorar la nutrición, disminuyendo el impacto ambiental de la ganaderia.

Objetivo:

Evaluar el efecto de tres especies forrajeras tropicales en arreglos silvopastoriles sobre la producción de metano y parámetros de fermentación utilizando un sistema de simulación ruminal in vitro (RUSITEC).

Métodos:

El tratamiento control consistió en una dieta basal de pasto Colosuana (COL; Bothriochloa pertusa), mientras que las demás dietas consistieron de 70% COL complementado con 30% de forraje arbustivo de Leucaena leucocephala (CL), Guazuma ulmifolia (CG) ó Crescentia cujete (CT). Se utilizó un diseño de bloques completos al azar con mediciones repetidas en el tiempo.

Resultados:

La inclusión de forrajes arbustivos no afectó (p>0.05) el pH, la degradación de la materia orgánica (DMO), ni los ácidos grasos volátiles (AGV). La inclusión de recursos arbóreos afectó la degradación de los constituyentes estructurales. La concentración de N-NH3 aumentó en la dieta CL en comparación con el control (p<0.05). En general, la producción de metano en términos de mL/día, mL/g DMi, mL/g DMd y mL/g OMd se redujo en CL respecto a COL (p<0.05).

Conclusiones:

Con base en estos resultados, la inclusión de Leucaena leucocephala, Guazuma ulmifolia o Crescentia cujete en dietas a base de B. pertusa mejora algunos parámetros de fermentación ruminal y reduce la producción in vitro de metano.

Palabras clave:

adaptación animal, agricultura tropical, cambio climático, fermentación ruminal, forrajes, pastoreo, ganado, producción de metano, rumiantes, sistemas silvopastoriles.

Resumo

Antecedentes:

A suplementação do gado em pastejo com forragens nativas e naturalizadas usando sistemas silvipastoris, tem sido sugerida como uma estratégia acessível para reduzir a produção de metano e melhorar a nutrição, diminuindo os impactos ambientais da produção de gado.

Objetivo:

Avaliar o efeito de espécies forrageiras tropicais de arranjo silvipastoril na produção de metano e parâmetros de fermentação usando um sistema de simulação ruminal in vitro (RUSITEC).

Métodos:

O controle do tratamento (COL) consistiu em uma dieta basal de Colosuana (Botrhiochloa pertusa) sozinha, enquanto as outras dietas, CL, CG e CT, foram complementadas com 30% de Leucaena leucocephala, 30% Guazuma ulmifolia ou 30% Crescentia cujete, respectivamente. Um desenho de blocos completos randomizados com medições repetidas ao longo do tempo foi aplicado.

Resultados:

A inclusão de forragem arbustiva não afetou o pH (p>0,05), a degradação da matéria orgânica (OMD) e os ácidos graxos voláteis (AGV). A degradação dos componentes estruturais foi afetada pela inclusão de forragem arbustiva. A concentração de N-NH3 aumentou no CL em comparação ao COL (p<0,05). Em geral, a produção de metano em termos de CH4 (mL/dia), CH4 (mL/g DMi), CH4 (mL/g DMd) e CH4 (mL/gOMd) reduziu (p<0,05) no CL em relação ao COL.

Conclusões:

Com base nos resultados e considerando as condições experimentais avaliadas, a inclusão de Leucaena leucocephala, Guazuma ulmifolia ou Crescentia cujete em dietas à base de B. pertusa melhora alguns parâmetros de fermentação ruminal e reduz a produção de metano in vitro.

Palavras-chave:

adaptação animal, agricultura tropical, fermentação ruminal, forragem, gado, mudança climática, pastagem, produção de metano, ruminantes, sistemas silvipastoris.


Introduction

Cattle production is a central activity in Cesar (Colombia, South America), providing socioeconomical services, particularly to small producers. With over 1.4 million cattle, this province holds 6% of the inventory and 4.6% of the national dairy production (Colombian Agricultural Institute [ICA], 2020; Ministry of Agriculture and Rural Development of Colombia [MADR], 2018). Due to market globalization this sector faces serious environmental, social, and commercial challenges. Cattle production in this region requires transformation into a profitable, competitive, carbon neutral and ecologically sustainable activity to guarantee internal food safety and economic growth.

A limitation for this transition is related to animal feeding, given that production relies on grass monoculture (Mojica et al., 2017) with low production, availability, and nutritional quality of forages, mostly during the dry seasons. In consequence, the system poorly adjusts to the nutritional requirements of cattle, thus affecting its productivity and profitability (Murillo et al., 2014; Arce et al., 2013). The low nutritional quality and digestibility of forages, given their high content of structural carbohydrates and low protein, increases ruminal methane (CH4) emissions (Archimède et al., 2011). The CH4 has high global warming potential, which is 28 times higher than CO2 (IPCC, 2014) and represents from 2 to 12% of energy loss (Johnson and Johnson, 1995). Additionally, pasture expansion for cattle grazing has been associated with negative pressure over strategic ecosystems, causing deforestation, biodiversity loss, water contamination, soil compaction and other negative impacts on the environment (Cajas-Girón et al., 2012; Roncallo et al., 2012), with greenhouse gas (GHG) emissions being one of the biggest problems (Herrero et al., 2016).

Given this scenario of the cattle role on GHG emissions, mitigation strategies are required. Silvopastoral systems (SPS) are considered an alternative strategy for ruminant production that has positive effects on methane reduction (Galindo et al., 2016; Rivera et al., 2015). According to several researchers, the inclusion of legume forages in grass-based diets (such as Leucaena leucocephala, clover (Trifolium sp.) and other local forage leguminous resources) has a positive effect on methane reduction, ranging from 7 to 54% lower CH4 emissions (Molina et al., 2013; Navarro-Villa et al., 2011; Klein and Eckard 2008; Possenti et al., 2008).

The objective of this study was to evaluate the effect of tropical forage species in silvopastoral arrangements on methane production and fermentation parameters using an in vitro ruminal simulation technique - RUSITEC.

Materials and Methods

Ethical considerations

The Animal Care and Use Committee of Universidad Nacional de Colombia (CICUA-013) approved the use, handling and treatments of animals in the study.

Forage sampling

The forage grass and shrub forage samples were collected from pastoral monocultures and silvopastoral arrangements established by AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) at its Motilonia Research Center (Agustín Codazzi, Cesar, Colombia; 10°00’07’’N, 73°14’51’’W; 160 masl).

Annual average temperature is 27.8 °C, 70 % relative humidity, and 1,360 mm average rainfall. Sampling was performed during the dry season (April) using the hand-pluck method (Euclides et al., 1992) up to the regular grazing height (45 days regrowth). After collection, samples were analyzed in the Ruminal Biotechnology Laboratory (BIORUM) at Universidad Nacional de Colombia (Medellín, Colombia).

Treatments

Each diet was formulated based on the estimated dry matter consumption of animals grazing on monocultures and SPS (Cuartas et al., 2015) (Table 1). Treatments evaluated were: COL: 100% colosuana (Bothriochloa pertusa), CL: 70% colosuana + 30% Leucaena (Leucaena leucocephala), CG: 70% colosuana + 30% guácimo (Guazuma ulmifolia), CT: 70% colosuana + 30% totumo (Crescentia cujete).

Table 1

Composition of the four evaluated treatments.

Treatment Colosuana Leucaena Guácimo Totumo
Inclusion (%)
COL 100 - - -
CL 70 30 - -
CG 70 - 30 -
CT 70 - - 30

[i]COL: 100% colosuana (Bothriochloa pertusa), CL: 70% colosuana + 30% Leucaena (Leucaena leucocephala), CG: 70% colosuana+ 30% guácimo (Guazuma ulmifolia), CT: 70% colosuana + 30% totumo (Crescentia cujete).

Analyses of nutritional quality

Samples were dried using a forced air stove at 60°C for 48 hours at constant mass.

Crude Protein (CP) content was determined using the Kjeldhal method (AOAC, 2010). Neutral-detergent fiber (NDF) and acid-detergent fiber (ADF) were estimated using the methodology proposed by Van Soest et al. (1991); lignine content (LIG) was determined using sulfuric acid (72% v/v) on the ADF residue. Ash content (AC) was measured by direct incineration of the sample in a muffle at 500°C for 4 hours (adapted from AOAC 942.05), and organic matter (OM) content was calculated as the difference between DM and AC. Ethereal extract (EE) was determined with the Soxhlet method (AOAC, 2010).

In vitro ruminal simulation technique RUSITEC

For the in vitro fermentation, a semicontinuous RUSITEC system (Rumen simulation technique) was used following Czerkawski and Breckenridge (1977).

The ruminal content (liquid and solid) for the initial inoculum was obtained from two Holstein breed cows (700 ± 25 kg live weight) equipped with permanent rumen cannula, adapted to a diet based on angleton grass (Dichantium aristatum) hay; with CP, NDF, ADF and in vitro dry matter digestibility (IVDMD) values of 3.95, 78.5, 52.3, and 45.2%, respectively. Both cows were housed at Paysandú Experimental Farm, property of the National University of Colombia in Medellín (Colombia). The ruminal liquid was collected in thermos, preheated to 39 °C, to guarantee temperature and anaerobiosis conditions during transfer to the laboratory. Once in the laboratory, the liquid was mixed and filtered through two layers of muslin (0.45 mm pore size) under constant gassing with CO2. The RUSITEC system consisted of eight vessels (fermentation units) with 700 ml effective volume, kept in a 39 °C water-bath. To begin incubation, 80 grams (g) of the solid portion of the ruminal content and 12 g of the treatment to be evaluated were deposited in each fermenter into 100 μm pore size nylon bags, 500 mL of ruminal liquid, and 200 mL of pH = 8.3 artificial saliva (McDougall, 1948). After 24 h, the bag with the solid ruminal content was replaced in each fermenter by one with a new substrate (treatment). In the following days, each bag was replaced at 24-hour intervals, guaranteeing 48-hour incubation per bag. Daily pH was measured immediately after sample collection, using a pH meter (Metrohn model 704, Herisau, Switzerland). During the bag exchange process, the containers were gassed with pure CO2 to maintain anaerobic conditions. Throughout the experiment, saliva was prepared daily and was continuously supplied in each fermenter at a rate of 535 mL/d (2.47%/h) with a peristaltic pump and constant agitation through a mechanical platform (rate: 10-12 movements/ minute) to avoid dilution of the products resulting from the fermentation system. The volume of kitasatos flasks (Glassco, Haryana, India) was measured daily to guarantee the flow of artificial saliva in the fermenters.

During sampling, from days 7 to 13, the effluent liquid was collected in 1L kitasato flasks with a solution 20% v/v of H2SO4 (Merck, Whitehouse Station, NJ, USA) to determine VFA profile and ammonia, while the nylon bags with diet residue were used to determine dry matter degradability (DMD). The experiment was carried out in two periods (blocking factor). Incubation in each period lasted 10 days, with 7 days of adaptation (from day 0 to 7). The measurements were made from day 8 to day 10. The treatments were randomly assigned to the fermenters per period, with four replicates per treatment.

In vitro nutrient degradability, fermentation parameters and methane production

The DMD was calculated as the difference between incubated DM and degraded DM after 48 hours. To determine degradability of cell wall components, NDF and ADF percentage was determined from the residual DM following Van Soest et al. (1991). The NDF degradability (NDFD) and ADF degradability (ADFD) were estimated as the difference between incubated NDF or ADF, and degraded NDF or ADF, respectively. The OM digestibility (OMD) was determined considering the incubated OM and the degraded OM. Crude protein degradability (CPD) was determined after a previous detachment of ruminal microorganisms using a metil-cellulose solution (Whitehouse et al., 1994). The CP was then estimated using Kjeldhal’s method (AOAC, 2010). The CPD was obtained from the difference between incubated and degraded CP. Ammoniacal nitrogen (N-NH3) was quantified following protocols described by the AOAC (1999), using an ammonium selective electrode ISE.NH3-N (Metrhom model SM703, Herisau, Switzerland). Volatile fatty acids (VFA) were estimated using gas chromatography (GC) (Shimadzu model GC2014, Kyoto, Japan) equipped with autosampler, auto-injection and an Agilent® HP-FFAP polyethylene glycol capillary column of 25 m length x 0.32 mm internal diameter x 0.5 μm film thickness (Agilent Technologies©, Santa Clara, CA, USA). A flame ionization detector (FID) was used with helium as carrier gas at a constant speed of 42 cm/second. The temperature of the split injection port and detector were 260°C and 280°C, respectively. For quantification purposes, problematic samples were compared to the retention times of established standards.

The volume of gas produced was measured through a dry process gasometer (Shinagawa, Model DC-1C, Tokyo, Japan). The gas produced was collected in 5 L aluminium bags and a hermetic closure valve, which were connected to the kitasato flasks containing the effluent, while the samples for CH4 determination were collected in vacutainers. The CH4 analysis was performed using GC (Shimadzu, model GC2014, Kyoto, Japan) equipped with FID and an Agilent® HPPLOT Molesieve 5Å capillary column of 30 m length x 0.32 mm internal diameter x 12 μm film thickness (Agilent Technologies©, Santa Clara, CA, USA). The carrier gas used was UHP 5.0 grade helium at a linear speed of 35.4 cm/second. Injector and detector temperatures were 100°C and 300°C, respectively.

Statistical Analysis

The fermentation variables were subjected to analysis of variance (ANOVA) using the MIXED procedure of the SAS® program (version 9.1.3; SAS Institute Inc., Cary, NC, USA; 2001) through a randomized complete block (RCB) design with univariate structure and analysis of repeated measures in time (three measurement times) with 4 treatments, 8 repetitions and 2 measurement periods. The model included the fixed effects of diet, the measurement time, and their interaction. The experimental period (blocking factor) and the fermenter (experimental unit) were considered as random effects. Since there were no effects of measurement time or diet x time interactions, these data were not included in the tables. The covariance structures were adjusted by using mixed models with fixed and random effects, which allowed estimating the most appropriate standard errors for the different comparisons, according to the characteristics of each set of values. The minimum values of the Schwarz's Bayesian Information Criterion (BIC) were used to select the covariance structure.

Significant differences were compared using a Tukey test with a 5% significance level (p<0.05), and values between 0.05≤p≤ 0.10 were considered as trends.

The statistical model applied was:

Where,

Yijk: reading for the i-th treatment, on j-th block, at k-th time.

μ: overall population average

Di: i-th diet effect.

βj: j-th block effect (1 to 2).

εd: error between diets

Tk: measurement time (1 to 3).

(DT)ik: diet and measurement time interaction (1 to 12).

εijk: experimental error.

Results

Chemical composition and in vitro dry matter digestibility

The OM contents were between 88.61 and 89.33%. The CP content was the lowest for COL (7.85%), while inclusion of Leucaena leucocephala (CL), Guazuma ulmifolia (CG) and Crescentia cujete (CT) increased CP (41, 31 and 26%), respectively, compared to the control treatment (COL). Structural cell wall components, ADF and NDF, were higher for COL as compared to other treatments, while LIG was higher in CL, CG and CT, compared to COL (Table 2).

Regarding IVDMD, values were found between 42.43 and 49.05%, with higher digestibility in the three shrub diets (CL, CG and CT). For the forages used in this study, CP contents were between 12.6 for C. cujete and 28.4% for L. leucocephala, the latter standing out for its high protein content. The OM contents were between 90.8 and 92.4%, and AC were between 7.6 and 9.2%. The NDF contents (between 42.2 and 56.7%) were lower for shrub forage compared to grass-based diets of B. pertusa. The ADF content ranged from 24.7 to 36.5%, while LIG ranged from 15.5 to 17.8%, being higher on grass-based diets.

pH, Methane production and in vitro fermentation parameters

As shown in Table 3, the pH was not affected (p>0.05) by the inclusion of shrub forage in the diets.

Gas production significantly diminished (p<0.05) between 9 and 13% in diets with 30% inclusion of forage resources (CL, CG and CT) compared to the control treatment (COL), even when DMD increased between 5 and 9% and OMD not was affected for treatments CL, CG and CT compared to COL.

Table 2

Chemical composition and in vitro dry matter digestibility of the diets under evaluation.

Diet OM AC CP NDF ADF EE LIG IVDMD
COL 88.6 11.4 7.8 73.9 38.4 1.2 8.3 42.4
CL 89.6 10.4 13.1 58.1 33.2 1.5 9.3 47.9
CG 89.3 10.7 8.2 63.9 36.5 1.8 13.9 43.8
CT 88.8 11.2 10.5 62.7 33.9 2.0 9.5 49.1
L 92.4 7.6 28.4 42.2 24.7 2.7 15.5 49.0
G 91.6 8.4 14.6 52.2 33.7 1.9 17.8 39.7
T 90.8 9.2 12.6 56.7 36.5 1.8 15.7 44.6

COL: 100% colosuana (Bothriochloa pertusa), CL: 70% colosuana + 30% Leucaena (Leucaena leucocephala), CG: 70% colosuana + 30% guacimo (Guazuma ulmifolia), CT: 70% colosuana + 30% totumo (Crescentia cujete), L: Leucaena, G: guacimo, T: totumo. Chemical composition expressed as percentages of dry matter (DM), organic matter (OM), ash content (AC), crude protein (CP), neutral-detergent fiber (NDF), acid-detergent fiber (ADF), lignine (LIG), ethereal extract (EE), and in vitro dry matter digestibility (IVDMD). Different superscript letters ( a, b, c ) within columns indicate significant statistical difference according to the TukeyKramer test (p<0.05).

Table 3

In vitro ruminal fermentation parameters and nutrient degradation of four treatments after 48 hours of incubation in a semi-continuous ruminal simulation system (RUSITEC).

Parameter Diet
COL CL CG CT p-value
pH 6.87 6.86 6.86 6.84 0.3763
Total gas (L/day) 2.38 a 2.09 b 2.17 b 2.14 b 0.0019
N-NH3 (mg/dL) 4.17 b 7.50 a 4.05 b 4.20 b <0.0001
DMD (%) 46.24 b 50.27 a 48.84 a 48.36 a 0.0040
OMD (%) 42.42 45.78 44.20 43.68 0.1165
NDFD (%) 34.39 a 27.43 b 32.30 a 28.30 b <0.0001
ADFD (%) 29.52 a 29.55 a 27.66 a 23.10 b <0.0001
CPD (%) 63.39 a 64.82 a 55.75 b 47.83 c <0.0001
Total VFA (mmol/L) 21.62 21.13 22.22 23.24 0.1754
Acetate (mmol/L) 14.08 13.77 13.50 13.80 0.1163
Propionate (mmol/L) 5.47 5.62 5.59 5.70 0.5733
Butirate (mmol/L) 1.71 1.68 1.67 1.98 0.2916
Isobutyrate (mmol/L) 0.10 0.11 0.10 0.10 0.1762
Valerate (mmol/L) 0.31 0.33 0.32 0.30 0.2824
A:P 2.45 2.43 2.41 2.42 0.1000
CH4 (mL/day) 12.61 a 9.38 bc 10.47 ac 11.76 ac 0.0300
CH4 (mL/g DMi) 1.23 a 0.96 b 0.95 b 1.19 a 0.0214
CH4 (mL/g DMd) 2.70 a 1.94 bc 2.02 ac 2.30 ac 0.0345
CH4 (mL/ gNDFd) 4.89 4.08 4.26 4.62 0.1355
CH4 (mL/gADFd) 10.92 a 8.53 ac 6.47 bc 8.96 ac <0.0001
CH4 (mL/gOMd) 3.17 a 2.23 bc 2.20 bc 2.90 ac 0.0035

COL: 100% colosuana (Bothriochloa pertusa), CL: 70% colosuana + 30% Leucaena (Leucaena leucocephala), CG: 70% colosuana + 30% guacimo (Guazuma ulmifolia), CT: 70% colosuana + 30% totumo (Crescentia cujete), DMD: dry matter digestibility, OMD: organic matter degradation, NDFD: neutral-detergent fiber digestibility, ADFD: acid-detergent fiber digestibility, CPD: crude protein digestibilty, pH: potential hydrogen, N-NH3: ammoniacal nitrogen, VFA: volatile fatty acids, A:P ratio: acetate:propionate ratio, Gas: gas production, CH4: methane, DMi: incubated dry matter, DMd: degraded dry matter, NDFd: degraded neutral detergent fiber, ADFd: degraded acid-detergent fiber, OMd: degraded organic matter. Different superscript letters ( a, b, c ) within columns indicate significant statistical difference according to the Tukey-Kramer test (p<0.05).

The NDFD significantly diminished (p<0.05) in CL (27.43%) and CT (28.3%) compared to the control (34.49%), but no difference was found with CG (32.3%). The ADF degradation only diminished in CT compared to other treatments. The CPD was higher (p<0.05) for COL (63.69%) and CL (64.82%) in comparison to CG (55.75%) and CT (47.83%). The N-NH3 concentration increased (p<0.05) by 44 to 46% in CL compared to others.

On the other hand, total VFA production and molar proportions of individual VFA were not affected (p>0.05) by forage inclusion. The acetate:propionate (A:P) ratio showed a tendency to decrease (p= 0.10) in diets CL, CG and CT compared to COL.

Methane production expressed in mL/d, mL/g DMd, mL/g DMi, and mL/g OMd, had similar emissions in all diets, showing a significant reduction (p<0.05) for CL compared to COL.

Discussion

Inclusion of shrub forage as a protein source in low quality diets represents an effective alternative to improve the nutritional quality of grass-based diets, increasing animal productivity, particularly in the low tropics (Argüello-Rangel et al., 2019). Additionally, secondary compounds from the plants used in ruminant feeding can be used to manipulate ruminal fermentation dynamics (Anantasook y Wanapat, 2012). Under the present conditions, DMD increased in all diets with inclusion of shrub forage, which could result in increased passage rate and voluntary consumption of forage (Choque et al., 2018). These results agree with Molina et al. (2015), who reported that 27% inclusion of L. leucocephala foliage in a grass-based diet increased DMD by 12%. The low degradability of fiber fractions (NDFD and ADFD) in diets with shrub forage could have resulted in lower cellulolytic activity due to the effect of secondary compounds, such as tannins and saponins, present in L. leucocephala (Soltan et al., 2017), G. ulmifolia (López et al., 2004) and C. cujete (Pereira et al., 2017) on ruminal microbial populations, particularly protozoa, responsible for up to 25-30% of fiber degradation (Lee et al., 2011), or through the formation of cellulose complexes, reducing carbohydrates degradation (Khiaosa et al., 2015).

The lowest (p<0.05) fiber digestibility was observed in the diet with L. leucocephala (NDFD) and C. cujete (NDFD and ADFD), possibly due to tannins and phenynins in different genres of this shrub, which form cellulose complexes and reduce carbohydrate degradation, limiting rumen degradation (Parente et al., 2016; Rojas et al., 2015; Khiaosa et al., 2015). The effect of these compounds may be due to union with sterols of the microbial membranes, particularly cholesterol, forming insoluble complexes and lysing the cells (Ramos-Morales et al., 2017). These compounds can also affect digestibility by binding to proteins and other nutrients, limiting microbial enzymatic activity -for example, α-glycosidase and α amylase (Li et al., 2011)thereby affecting fermentative processes in the rumen (Jayanegara et al., 2014).

In this context, it is suggested that decreased degradation of structural components may be due to adaptation of microbial populations to the new ruminal environment (Sampaio et al., 2009). According to Bodas et al. (2012), the effects of secondary metabolites are more evident in in vitro than in in vivo studies, probably because the compound is distributed more uniformly in batch or continuous cultures, and microbes are more quickly exposed to the activity of the phyto-chemical.

In this study, CPD was not affected in CL as compared to COL; however, CPD decreased (p<0.05) in CG and CT, which corresponds to the high CP content of this legume. However, the degradation percentage of this nutrient in all diets was greater than the degradability of the wall constituents (NDFD and ADFD), showing that secondary compounds, like tannins and saponins, bind with higher affinity to fiber (NDF and ADF) than to protein. In L. leucocephala, 0.16 and 0.22% of condensed tannins were bound to CP and fiber, respectively (La O et al., 2003). These differences may be associated with the type of tannins in the forages. Hydrolysable tannins do not generate a bypass effect as occurs with condensed tannins because the formers do not establish rigid bonds with proteins at pH range of the rumen (McSweeney et al., 1988).

These CP degradability in rumen suggest that the bypass protein would be approximately 40%, which is beneficial since it would improve the synthesis of microbial protein. This guarantees the flow of protein with high biological value to the small intestine (duodenum) favouring an efficient use of forages by ruminants (Rodríguez et al., 2010; Wickersham et al., 2008) and increasing milk protein (Martínez et al., 2004) as well as decreasing nitrogen and ammonia excretion to the environment (Cobellis et al., 2016).

The N-NH3 concentration increased (p<0.05) in CL compared to all other diets. This could be due to the higher CP content and CPD in this diet, supporting Javaid et al. (2008), who reported that increased degraded protein in the rumen raises ammoniacal nitrogen levels in buffalos. Other researchers have also reported a positive association between level of protein supplementation and ruminal ammonia concentrations (Mathis et al., 2000; Wickersham et al., 2008).

Therefore, the synchronization between N-NH3, CPD, and CP in the diet results in increased microbial protein synthesis (Chanthakhoun et al., 2012). In this regard, Detmann et al. (2009) found that the ammonium concentration in rumen where degradation and NDF consumption is optimized, was between 8 to 15 mg/dL. Fiber degradation is limited below that level. However, Slyter et al. (1979), evaluating the effect of ruminal ammonium concentration in steers receiving a forage diet with 8% CP, found that 2 to 5 mg/dL of N-NH3 in the ruminal fluid was sufficient to allow maximum growth of rumen microorganisms.

The low contents of ammoniacal nitrogen observed in treatments CG and CT may be explained by the moderate contents of condensed tannins (<4% DM) in Guazuma ulmifolia and Crescentia sp, (Rojas et al., 2015). Tannins bind with dietary proteins, inhibit microbial deaminases and reduce proteolysis, diminishing protein degradation in the rumen, consequently diminishing N-NH3 (Szumacher-Strabel and Cieślak, 2012; Bhatta et al., 2009; Min et al., 2006; Newbold et al., 2004). However, ammonium concentration in LC was higher compared to the other treatments, which is explained by the high CPD, due to a low affinity of tannins and saponins in Leucaena with the protein (La O et al., 2003).

The VFA are the main products of ruminal fermentation. They regulate physiological processes in ruminants, such as cholesterol, insulin, and glucagon synthesis (Mao et al., 2016). In the present study, total VFA concentration and individual VFA profiles were not affected by forage inclusion, supporting the pH stability among diets. However, the A:P ratio showed a tendency to diminish in diets supplemented with forages, possibly due to high DM degradation, also related to the reduction of methane synthesis given that propionate production requires hydrogen (Martin et al., 2010). Patra and Yu (2015) found reductions in the A:P ratio related to decreased protozoal populations, which are associated with methanogenic bacteria. This is a side effect of secondary compounds, given that acetate and butyrate are the main fermentation products of these microorganisms. As an outcome, it contributes to low methane production and hig microbial protein availability. Secondary compounds in L. leucocephala, G. ulmifolia and C. cujete could explain the VFA profiles obtained in the present study (Soltan et al., 2017; Galindo et al., 2014; Alvear et al., 2013). These compounds also inhibit growth of Gram-positive bacteria (generally acetate producers) favouring propionate-producing bacterial species through competition (Wallace et al., 2002).

Similarly, Apráez et al. (2012) found that inclusion of Acacia decurrens (forage with tannins) in Raygrass-based diets decreased acetate production by 54% and methane by 80% compared to an only-Raygrass diet. Variations in total gas and methane production among diets may be explained by the variations in their chemical composition.

The results from the present study are comparable to those of Anantasook and Wanapat (2012) who found total VFA between 22.1 and 34.8 mmol/L after including leguminous resources into the diet.

The diet with L. leucocephala had the strongest decrease in methane production, likely due to the presence of tannins and low contents of fiber in this leguminous resource (Soltan et al., 2017). The effects of tannins and saponins over methanogenesis have been demonstrated in vivo (Tiemann et al., 2008; Beauchemin et al., 2007) as well as in vitro (Jayanegara et al., 2011; Tavendale et al., 2005). The effect of these components is related to direct inhibition of methanogenic archaea and/or depression of microbial metabolic processes implied in methanogenesis (Li et al., 2014; Patra, 2012). However, an antiprotozoal effect has also been proved through complex formation with sterols in the plasmatic membranes of protozoa (Jouany and Morgavi 2007; Goel and Makkar 2012), consequently reducing methane production given their symbiotic relationship with methanogenic archaea (Kobayashi, 2010). Bodas et al. (2008) and Kamra et al. (2008) evaluated the potential effect of plant extracts on in vitro methanogenesis, reporting reductions in CH4 between 15 and 25% associated with decreased methanogenic populations without adverse effects on digestibility or VFA production.

From these results, a reduction of ruminal methane synthesis can be inferred, therefore lowering the emission of this greenhouse gas into the atmosphere, which is detrimental to the environment by contributing to global warming and it also represents a loss of energy for the animal (Martínez et al., 2017; Yang et al., 2015).

In conclusion, 30% dietary inclusion of forages such as Leucaena leucocephala, Guazuma ulmifolia and Crescentia cujete in grass-based diets of B. pertusa increased protein content and decreased fiber in the diets, improving DMD, ammoniacal nitrogen production, and the dynamics of ruminal fermentation parameters, while decreasing methane production. This suggest L. leucocephala, G. ulmifolia and C. cujete are valuable feed supplements to improve nutrient utilization efficiency in ruminants in the low tropics.

Acknowledgements

The authors would like to thank the people at Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) and its Centro de Investigación Motilonia for their support and assistance in the forage sampling for this study.

References

Alvear C, Melo W, Guerrero J, Ceron A, Santacruz E. Especies arbóreas y arbustivas con potencial silvopastoril en la zona de bosque muy seco tropical del norte de Nariño y sur del Cauca. Revista Agroforestería Neotropical 2013; (3): 37-46. [May 6, 2020]. URL: http://revistas.ut.edu.co/index.php/agroforesteria/article/view/320

C Alvear W Melo J Guerrero A Ceron E. Santacruz Especies arbóreas y arbustivas con potencial silvopastoril en la zona de bosque muy seco tropical del norte de Nariño y sur del Cauca.Revista Agroforestería Neotropical201333746http://revistas.ut.edu.co/index.php/agroforesteria/article/view/320

Anantasook N, Wanapat M. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian-Australas J Anim Sci 2012; 25(3): 325. https://doi.org/10.5713/ajas.2011.11131

N Anantasook M. Wanapat Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique.Asian-Australas J Anim Sci2012253https://doi.org/10.5713/ajas.2011.11131

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC international. 18th edition. Gaithersburg, US: AOAC International; 2010.

Association of Official Analytical Chemists (AOAC) Official Methods of Analysis of AOAC international18thGaithersburg, USAOAC International2010

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. 16th edition. Gaithersburg, MD, US: AOAC International; 1999.

Association of Official Analytical Chemists (AOAC) Official Methods of Analysis16thGaithersburg, MD, USAOAC International1999

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis . Gaithersburg, MD, US: AOAC International ; 1942.

Association of Official Analytical Chemists (AOAC) Official Methods of AnalysisGaithersburg, MD, USAOAC International1942

Apráez JE, Delgado JM, Narváez JP. Composición nutricional, degradación in vitro y potencial de producción de gas, de herbáceas, arbóreas y arbustivas encontradas en el trópico alto de Nariño. Livestock Research for Rural Development 2012; 24(3): 1-11. [March 5, 2020]. URL http://www.lrrd.org/lrrd24/3/apra24044.htm

JE Apráez JM Delgado JP Narváez Composición nutricional, degradación in vitro y potencial de producción de gas, de herbáceas, arbóreas y arbustivas encontradas en el trópico alto de NariñoLivestock Research for Rural Development2012243111http://www.lrrd.org/lrrd24/3/apra24044.htm

Archimède H, Eugène M, Magdeleine CM, Boval M, Martin C, et al. Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed SciTechnol 2011; 166: 59-64. https://doi.org/10.1016/j.anifeedsci.2011.04.003

H Archimède M Eugène CM Magdeleine M Boval C Martin Comparison of methane production between C3 and C4 grasses and legumesAnim Feed SciTechnol2011https://doi.org/10.1016/j.anifeedsci.2011.04.003

Arce Barboza BA, Peña Quiñones AJ, Cárdenas Rocha EA. Sistema de apoyo a la toma de decisiones para la selección de especies forrajeras (STDF) en función de la oferta ambiental en Colombia. Corpoica cienc tecnol agropecu 2013; 14 (2): 215-229. [April 10, 2020]. URL: http://revistacta.agrosavia.co/index.php/revista/article/view/483/385

BA Arce Barboza AJ Peña Quiñones EA. Cárdenas Rocha Sistema de apoyo a la toma de decisiones para la selección de especies forrajeras (STDF) en función de la oferta ambiental en Colombia.Corpoica cienc tecnol agropecu2013142215229http://revistacta.agrosavia.co/index.php/revista/article/view/483/385

Argüello-Rangel J, Mahecha-Ledesma L,AnguloArizala J. Arbustivas forrajeras: importancia en las ganaderías de trópico bajo colombiano. Agron Mesoam 2019; 30(3): 899-915. https://doi.org/10.15517/am.v30i3.35136

J Argüello-Rangel L Mahecha-Ledesma J. AnguloArizala Arbustivas forrajeras: importancia en las ganaderías de trópico bajo colombiano.Agron Mesoam2019303899915https://doi.org/10.15517/am.v30i3.35136

Beauchemin KA, McGinn SM, Martinez TF, McAllister TA. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J Anim Sci 2007; 85(8): 1990-1996. https://doi.org/10.2527/jas.2006-686

KA Beauchemin SM McGinn TF Martinez TA McAllister Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattleJ Anim Sci200785819901996https://doi.org/10.2527/jas.2006-686

Bhatta R, Uyeno Y, Tajima K, Takenaka A, Yabumoto Y, Nonaka I, Kurihara M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science 2009; 92(11): 5512-5522. https://doi.org/10.3168/jds.2008-1441

R Bhatta Y Uyeno K Tajima A Takenaka Y Yabumoto I Nonaka M. Kurihara Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations.Journal of Dairy Science2009921155125522https://doi.org/10.3168/jds.2008-1441

Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 2012; 176(1-4): 78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010

R Bodas N Prieto R García-González S Andrés FJ Giráldez S. López Manipulation of rumen fermentation and methane production with plant secondary metabolites.Animal Feed Science and Technology20121761-47893https://doi.org/10.1016/j.anifeedsci.2012.07.010

Bodas R, López S, Fernandez M, GarcíaGonzález R, Rodríguez AB, Wallace RJ, González JS. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim Feed Sci Technol 2008; 145(1-4): 245-258. https://doi.org/10.1016/j.anifeedsci.2007.04.015

R Bodas S López M Fernandez R GarcíaGonzález AB Rodríguez RJ Wallace JS González In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminantsAnim Feed Sci Technol20081451-4245258https://doi.org/10.1016/j.anifeedsci.2007.04.015

Carvajal Salcedo T, Cuesta Peralta A. Conservación y composición nutricional del follaje de sauco (Sambucus nigra). Pastos y Forrajes 2016; 39 (2): 125-132. ISSN 0864-0394. [April 5, 2020]. URL: http://www.fao.org/faostat/es/#homehttp://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S086403942016000200007&lng=es&nrm=iso

T Carvajal Salcedo A. Cuesta Peralta Conservación y composición nutricional del follaje de sauco (Sambucus nigra).Pastos y Forrajes2016392125132http://www.fao.org/faostat/es/#homehttp://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S086403942016000200007&lng=es&nrm=iso

Chanthakhoun V, Wanapat M, Wachirapakorn C, Wanapat S. Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livestock Science 2011; 140(1): 17-23. https://doi.org/10.1016/j.livsci.2011.02.003

V Chanthakhoun M Wanapat C Wachirapakorn S. Wanapat Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffaloLivestock Science201114011723

Choque Durand H, Huaita Patiño A, Cárdenas Villanueva LA, Ramos Zuñiga R. Efecto de la edad de rebrote en la degradación ruminal del pisonay (Erythrina sp) en el valle interandino de Abancay. Revista de Investigaciones Altoandinas 2018; 20(2): 189-202. https://doi.org/10.18271/ria.2018.363

H Choque Durand A Huaita Patiño LA Cárdenas Villanueva R. Ramos Zuñiga Efecto de la edad de rebrote en la degradación ruminal del pisonay (Erythrina sp) en el valle interandino de AbancayRevista de Investigaciones Altoandinas2018202189202https://doi.org/10.18271/ria.2018.363

Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment 2016; 545: 556-568. https://doi.org/10.1016/j.scitotenv.2015.12.103

G Cobellis M Trabalza-Marinucci Z. Yu Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A reviewScience of the Total Environment2016545556568https://doi.org/10.1016/j.scitotenv.2015.12.103

Cuartas CA, Naranjo JF, Tarazona AM, Correa GA, Barahona R. Dry matter and nutrient intake and diet composition in Leucaena leucocephala-based intensive silvopastoral systems. Trop. Subtrop. Agroecosyst 2015; 18(3). ISSN: 1870-0462. [March 20, 2020]. URL: http://www.revista.ccba.uady.mx/urn:ISSN:18700462-tsaes.v18i3.2125

CA Cuartas JF Naranjo AM Tarazona GA Correa R. Barahona Dry matter and nutrient intake and diet composition in Leucaena leucocephala-based intensive silvopastoral systems. Trop. Subtrop.Agroecosyst2015183http://www.revista.ccba.uady.mx/urn:ISSN:18700462-tsaes.v18i3.2125

Czerkawski JW, Breckenridge G. Design and development of a long-term rumen simulation technique(Rusitec). Br JNutr 1977:28(3):371-384. https://doi.org/10.1079/BJN19770102

JW Czerkawski G. Breckenridge Design and development of a long-term rumen simulation technique(Rusitec)Br JNutr1977283371384https://doi.org/10.1079/BJN19770102

de Klein CA, Eckard RJ. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust J Exp Agric 2008; 48: 14-20. [ May 15, 2020]. URL: https://www.researchgate.net/publication/248892116

CA de Klein RJ. Eckard Targeted technologies for nitrous oxide abatement from animal agriculture.Aust J Exp Agric2008481420https://www.researchgate.net/publication/248892116

Departamento Administrativo Nacional de Estadística (DANE). Encuesta nacional agropecuaria. Bogotá, Colombia. [January 08, 2020]. URL: http://www.dane.gov.co/index.php/agropecuario/encuesta-nacional-agropecuaria

Departamento Administrativo Nacional de Estadística (DANE) Encuesta nacional agropecuaria.Bogotá, Colombia.2020http://www.dane.gov.co/index.php/agropecuario/encuesta-nacional-agropecuaria

Detmann E, Paulino MF, Mantovani HC, Valadares Filho SDC, Sampaio CB, de Souza MA, Detmann KS. Parameterization of ruminal fibre degradation in low-quality tropical forage using Michaelis-Menten kinetics. Livestock Science 2009; 126(1): 136-146. https://doi.org/10.15517/nat.v13i2.39608

E Detmann MF Paulino HC Mantovani SDC Valadares Filho CB Sampaio MA de Souza KS. Detmann Parameterization of ruminal fibre degradation in low-quality tropical forage using Michaelis-Menten kineticsLivestock Science20091261136146https://doi.org/10.15517/nat.v13i2.39608

Ejelonu BC, Lasisi AA, Olaremu AG, Ejelonu OC. The chemical constituents of calabash (Crescentia cujete). Afr J Biotechnol 2011; 10(84): 19631-19636. https://doi.org/10.5897/AJB11.1518

BC Ejelonu AA Lasisi AG Olaremu OC. Ejelonu The chemical constituents of calabash (Crescentia cujete).Afr J Biotechnol20111084https://doi.org/10.5897/AJB11.1518

Euclides VPB, Macedo MCM, Oliveira MP. Avaliação de diferentes métodos de amostragem (para se estimar o valor nutritivo de forragens) sob pastejo. Revista Brasileira de Zootecnia 1992; 21 (4): 691-702. [April 5, 2020]. URL: https://www.researchgate.net/publication/284210807

VPB Euclides MCM Macedo MP. Oliveira Avaliação de diferentes métodos de amostragem (para se estimar o valor nutritivo de forragens) sob pastejoRevista Brasileira de Zootecnia1992214691702https://www.researchgate.net/publication/284210807

Food and Agriculture Organization (FAO). FAOSTAT Food and Agriculture Database. 2017. [April 15, 2020]. URL: http://www.fao.org/faostat/es/#home

Food and Agriculture Organization (FAO) FAOSTAT Food and Agriculture Database2017http://www.fao.org/faostat/es/#home

Galindo J, González N, Abdalla AL, Alberto M, Lucas RC, Dos Santos KC, Sarduy L. Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate. Cuban J Agric Sci 2016; 50 (1): 77-87. ISSN 0864-0408. [August 20, 2019]. URL: https://www.researchgate.net/publication/322622853_Effect_of_a_raw_saponin_extract_on_ruminal_microbial_population_and_in_vitro_methane_production_with_star_grass_Cynodon_nlemfuensis_substrate

J Galindo N González AL Abdalla M Alberto RC Lucas KC Dos Santos L. Sarduy Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate.Cuban J Agric Sci20165017787https://www.researchgate.net/publication/322622853_Effect_of_a_raw_saponin_extract_on_ruminal_microbial_population_and_in_vitro_methane_production_with_star_grass_Cynodon_nlemfuensis_substrate

Galindo J, González N, Marrero Y, Sosa A, Ruiz T, Febles G, Sarduy L. Effect of tropical plant foliage on the control of methane production and in vitro ruminal protozoa population. Cuban J Agric Sci 2014, 48(4): 359-364. Access date: August 8, 2019. URL: https://cjascience.com/index.php/CJAS/article/view/564

J Galindo N González Y Marrero A Sosa T Ruiz G Febles L. Sarduy Effect of tropical plant foliage on the control of methane production and in vitro ruminal protozoa population.Cuban J Agric Sci2014484359364https://cjascience.com/index.php/CJAS/article/view/564

Goel G, Makkar HP. Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 2012; 44(4):729-739. https://doi.org/10.1007/s11250-011-9966-2

G Goel HP. Makkar Methane mitigation from ruminants using tannins and saponinsTrop Anim Health Prod2012444729739https://doi.org/10.1007/s11250-011-9966-2

Goering HK, Van Soest PJ. Forage fiber analysis. Agriculture Handbook No. 379. Agricultural Research Service - USDA. Washington, D.C, USA. 1970. [April 5, 2020]. URL: https://naldc.nal.usda.gov/download/CAT87209099/ PDF

HK Goering PJ. Van Soest Forage fiber analysis. Agriculture Handbook379Agricultural Research Service - USDA.Washington, D.C, USA.1970https://naldc.nal.usda.gov/download/CAT87209099/ PDF

Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Stehfest E. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 2016; 6(5):452-461. https://doi.org/10.1038/nclimate2925

M Herrero B Henderson P Havlík PK Thornton RT Conant P Smith E. Stehfest Greenhouse gas mitigation potentials in the livestock sectorNat Clim Chang201665452461https://doi.org/10.1038/nclimate2925

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Tercera comunicación nacional de cambio climático. "Inventario nacional y departamental de gases de efecto. Bogotá D.C, Colombia. 2016. [April 5, 2020]. URL: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) Tercera comunicación nacional de cambio climático. "Inventario nacional y departamental de gases de efectoBogotá D.C, Colombia2016http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf

Instituto Colombiano Agropecuario (ICA). Censo Pecuario Nacional. 2020. [June 6, 2020]. URL: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018

Instituto Colombiano Agropecuario (ICA) Censo Pecuario Nacional2020https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018

Intergovernmental Panel on Climate Change (IPCC). Climate Change Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. editors: Pachauri RK, Meyer LA. Geneva, Switzerland. 2014. [June 15, 2020]. URL: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

Intergovernmental Panel on Climate Change (IPCC). Climate Change Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change RK Pachauri LA. Meyer GenevaSwitzerland.2014https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

Jayanegara A, Wina E, Takahashi J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australasian journal of animal sciences 2014; 27(10): 1426-1435. https://doi.org/10.5713/ajas.2014.14086

A Jayanegara E Wina J. Takahashi Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources.Asian-Australasian journal of animal sciences2014271014261435https://doi.org/10.5713/ajas.2014.14086

Jayanegara A, Wina E, Soliva CR, Marquardt S, Kreuzer M, Leiber F. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim Feed Sci Technol 2011; 163(2-4): 231-243. https://doi:10.1016/j.anifeedsci.2010.11.009

A Jayanegara E Wina CR Soliva S Marquardt M Kreuzer F. Leiber Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysisAnim Feed Sci Technol20111632-4231243https://doi:10.1016/j.anifeedsci.2010.11.009

Javaid A, Sarwar M, Shahzad MA. Ruminal characteristics, blood pH, blood urea nitrogen and nitrogen balance in Nili-ravi Buffalo (Bubalus bubalis) bulls fed diets containing various levels of ruminally degradable protein. Asian-Australas J Anim Sci 2008; 21(1): 51-58. https://doi.org/10.5713/ajas.2008.70025

A Javaid M Sarwar MA. Shahzad Ruminal characteristics, blood pH, blood urea nitrogen and nitrogen balance in Nili-ravi Buffalo (Bubalus bubalis) bulls fed diets containing various levels of ruminally degradable protein.Asian-Australas J Anim Sci20082115158https://doi.org/10.5713/ajas.2008.70025

Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995, 73(8); 2483-2492. https://doi.org/10.2527/1995.7382483x

KA Johnson DE. Johnson Methane emissions from cattle.J Anim Sci199573824832492https://doi.org/10.2527/1995.7382483x

Jouany JP, Morgavi DP. Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal 2007; 1(10): 1443-1466. https://doi.org/10.1017/S1751731107000742

JP Jouany DP. Morgavi Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production.Animal200711014431466https://doi.org/10.1017/S1751731107000742

Kamra DN, PatraAK, Chatterjee PN, Kumar R, Agarwal N, Chaudhary LC. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust J Exp Agric 2008, 48(2): 175-178. https://doi.org/10.1071/EA07268

PatraAK Kamra DN Kumar R Chatterjee PN Chaudhary LC Agarwal N Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview.Aust J Exp Agric2008482175178https://doi.org/10.1071/EA07268

Khiaosa-Ard R, Metzler-Zebeli BU, Ahmed S, Muro-Reyes A, Deckardt K, Chizzola R, Zebeli Q. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec. J Dairy Sci 2015; 98(4): 2611-2626. https://doi.org/10.3168/jds.2014-8751

R Khiaosa-Ard BU Metzler-Zebeli S Ahmed A Muro-Reyes K Deckardt R Chizzola Q. Zebeli Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiotaRusitec. JDairy Sci201598426112626https://doi.org/10.3168/jds.2014-8751

Kobayashi Y. Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation. Asian-Australas J Anim Sci 2010; 23(3): 410-416. https://doi.org/10.5713/ajas.2010.r.01

Y. Kobayashi Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen FermentationAsian-Australas J Anim Sci2010233410416.https://doi.org/10.5713/ajas.2010.r.01

La O O, Chongo B, Delgado D, Valenciaga D, Rodríguez Y, Scull I, Ruiz TE, Oramas A. Influencia del Polietilenglicol-3500 en la degradabilidad ruminal de Leucaena leucocephala cv CIAT7929. Cuban J Agric Sci 2003; 37(3): 273-281. https://www.researchgate.net/publication/289650990

O La O B Chongo D Delgado D Valenciaga Y Rodríguez I Scull TE Ruiz A Oramas Influencia del Polietilenglicol-3500 en la degradabilidad ruminal de Leucaena leucocephala cv CIAT7929Cuban J Agric Sci2003373273281https://www.researchgate.net/publication/289650990

Lee S, Lee S, Cho Y, Kam D, Lee S, Kim C, Seo S. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Animal Feed Science and Technology 2011; 166: 269-274. https://doi.org/10.1016/j.anifeedsci.2011.04.070

S Lee S Lee Y Cho D Kam S Lee C Kim S. Seo Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production.Animal Feed Science and Technology2011166269274https://doi.org/10.1016/j.anifeedsci.2011.04.070

Li X, Durmic Z, Liu S, McSweeney CS, Vercoe PE. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec. Anaerobe ; 2013 29: 100-107. https://doi.org/10.1016/j.anaerobe.2013.10.008

X Li Z Durmic S Liu CS McSweeney PE. Vercoe Eremophila glabra reduces methane production and methanogen populations when fermented in a RusitecAnaerobe201329100107https://doi.org/10.1016/j.anaerobe.2013.10.008

Li YX, Wijesekara I, Li Y, Kim SK. Phlorotannins as bioactive agents from brown algae. Process Biochemistry 2011; 46(12), 2219-2224. https://doi.org/10.1016/j.procbio.2011.09.015

YX Li I Wijesekara Y Li SK. Kim Phlorotannins as bioactive agents from brown algae.Process Biochemistry2011461222192224https://doi.org/10.1016/j.procbio.2011.09.015

López J, Tejeda I, Vásquez C, Garza JD, Shimada A. Condensed tannins in humid tropical activity: Part 1. Journal of the Science of Food and Agriculture 2004; 84: 291-294. https://doi.org/10.1002/jsfa.1651

J López I Tejeda C Vásquez JD Garza A. Shimada Condensed tannins in humid tropical activity: Part 1.Journal of the Science of Food and Agriculture200484291294https://doi.org/10.1002/jsfa.1651

Mao SY, Huo WJ, Zhu WY. Microbiome- metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ microbiol 2016; 18(2): 525-541. https://doi.org/10.1111/1462-2920.12724

SY Mao WJ Huo WY. Zhu Microbiome- metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model.Environ microbiol2016182525541https://doi.org/10.1111/1462-2920.12724

Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal 2010; 4:351-365. https://doi.org/10.1017/S1751731109990620

C Martin DP Morgavi M. Doreau Methane mitigation in ruminants: from microbe to the farm scale.Animal20104351365https://doi.org/10.1017/S1751731109990620

Martínez A, Vicente F. Baizán S, Barhoumi N. Interés agronómico de la inclusión de las habas forrajeras en las raciones de rumiantes en la Cornisa Cantábrica. Afriga 2017, 131:88-96.

A MartínezVicente F. Baizán SN. Barhoumi Interés agronómico de la inclusión de las habas forrajeras en las raciones de rumiantes en la Cornisa Cantábrica.Afriga20171318896

Martínez TF, Moyano FJ, Diaz M, Barroso FG, Alarcón FJ. Ruminal degradation of tannin-treated legume meals. J Sci Food Agric 2004; 84(14): 1979-1987. https://doi.org/10.1002/jsfa.1907

TF Martínez FJ Moyano M Diaz FG Barroso FJ. Alarcón Ruminal degradation of tannin-treated legume meals.J Sci Food Agric2004841419791987https://doi.org/10.1002/jsfa.1907

McDougall EI. The composition and output of sheep's saliva. Biochemical journal 1948, 43(1): 99-109. https://doi.org/10.1042/bj0430099

EI. McDougall The composition and output of sheep's saliva.Biochemical journal194843199109https://doi.org/10.1042/bj0430099

McSweeney CS, Kennedy PM, John A. Effect of ingestion of hydrolysable tannins in Terminalia oblongata on digestion in sheep fed Stylosanthes hamata. Australian Journal of Agricultural Research 1988; 39(2): 235-244. https://doi.org/10.1071/AR9880235

CS McSweeney PM Kennedy A. John Effect of ingestion of hydrolysable tannins in Terminalia oblongata on digestion in sheep fed Stylosanthes hamata.Australian Journal of Agricultural Research1988392235244https://doi.org/10.1071/AR9880235

Min BR, Pinchak WE, Anderson RC, Fulford JD, Puchala R. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat 1. Journal of animal science 2006; 84(9): 2546-2554. https://doi.org/10.2527/jas.2005-590

BR Min WE Pinchak RC Anderson JD Fulford R. Puchala Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat 1.Journal of animal science200684925462554https://doi.org/10.2527/jas.2005-590

Mojica-Rodríguez JE, Castro-Rincón E, Carulla-Fornaguera J, Lascano-Aguilar CE. Effect of stage of maturity on fatty acid profile in tropical grasses. Corpoica cienc tecnol agropecu 2017; 18(2): 217-232. https://doi.org/10.21930/rcta.vol18_num2_art:623

JE Mojica-Rodríguez E Castro-Rincón J Carulla-Fornaguera CE. Lascano-Aguilar Effect of stage of maturity on fatty acid profile in tropical grasses.Corpoica cienc tecnol agropecu2017182217232https://doi.org/10.21930/rcta.vol18_num2_art:623

Molina IC, Donneys G, Montoya S, Rivera JE, Villegas G, Chará J, Barahona R. La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development 2015; 27(5): 1-8. [August 20, 2017]. URL: http://www.lrrd.org/lrrd27/5/moli27096.html

IC Molina G Donneys S Montoya JE Rivera G Villegas J Chará R. Barahona La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus.Livestock Research for Rural Development201527518http://www.lrrd.org/lrrd27/5/moli27096.html

Molina Botero IC, Cantet JM, Montoya S, Correa Londoño GA, Barahona Rosales R. in vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. CES Medicina Veterinaria y Zootecnia 2013; 8(2): 15-31. ISSN 1900-9607. [August 20, 2017]. URL:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1900-96072013000200002

IC Molina Botero JM Cantet S Montoya GA Correa Londoño R. Barahona Rosales in vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium.CES Medicina Veterinaria y Zootecnia2013821531http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1900-96072013000200002

Murillo Solano J, Barros Henríquez JA, Roncallo Fandiño B, Arrieta Pico G. Requerimientos hídricos de cuatro gramíneas de corte para uso eficiente del agua en el Caribe seco colombiano. Corpoica cienc tecnol agropecu 2014, 15(1): 83-99. [August 20, 2017]. URL: http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a08. pdf

J Murillo Solano JA Barros Henríquez B Roncallo Fandiño G. Arrieta Pico Requerimientos hídricos de cuatro gramíneas de corte para uso eficiente del agua en el Caribe seco colombiano.Corpoica cienc tecnol agropecu20141518399http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a08. pdf

Navarro-Villa A, O´Brien M, López S, Boland TM, O´Kiely P. in vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim Feed Sci Technol 2011; 168: 152-164. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.091

A Navarro-Villa M O´Brien S López TM Boland P. O´Kiely in vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT).Anim Feed Sci Technol2011168152164http://dx.doi.org/10.1016/j.anifeedsci.2011.04.091

Newbold CJ, McIntosh FM, Williams P, Losa R, Wallace RJ. Effects of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology 2004; 114(1-4): 105-112. https://doi.org/10.1016/j.anifeedsci.2003.12.006

CJ Newbold FM McIntosh P Williams R Losa RJ. Wallace Effects of a specific blend of essential oil compounds on rumen fermentation.Animal Feed Science and Technology20041141-4105112https://doi.org/10.1016/j.anifeedsci.2003.12.006

Patra AK, Yu Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol 2015; 6: 1-11. https://doi.org/10.3389/fmicb.2015.01434

AK Patra Z. Yu Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations.Front Microbiol20156111https://doi.org/10.3389/fmicb.2015.01434

Patra AK. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 2012; 184(4): 1929-1952. https://doi.org/10.1007/s10661-011-2090-y

AK. Patra Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.Environ Monit Assess2012184419291952https://doi.org/10.1007/s10661-011-2090-y

Parente FGG, Oliveira AP, Rodrigues CMSC, Junior RGO, Paulo IMM, Nunes XP. Phytochemical screening and antioxidant activity of methanolic fraction from the leaves of Crescentia cujete L. (Bignoniaceae). J Chem Pharm Res 2016; 8(2): 231-236. [August 6, 2017]. URL: http://www.jocpr.com/articles/phytochemical-screening-and-antioxidant-activity-of-methanolic-fraction-from-the-leaves-of-crescentia-cujete-l-bignoniac.pdf

FGG Parente AP Oliveira CMSC Rodrigues RGO Junior IMM Paulo XP. Nunes Phytochemical screening and antioxidant activity of methanolic fraction from the leaves of Crescentia cujete L. (Bignoniaceae).J Chem Pharm Res201682231236http://www.jocpr.com/articles/phytochemical-screening-and-antioxidant-activity-of-methanolic-fraction-from-the-leaves-of-crescentia-cujete-l-bignoniac.pdf

Pereira S, de Araújo S, Guilhon G, Santos L, Junior L. In vitro acaricidal activity of Crescentia cujete L. fruit pulp against Rhipicephalus microplus. Parasitology research 2017; 116(5): 1487-1493. https://doi.org/10.1007/s00436-017-5425-y

S Pereira S de Araújo G Guilhon L Santos L. Junior In vitro acaricidal activity of Crescentia cujete L. fruit pulp against Rhipicephalus microplus.Parasitology research2017116514871493https://doi.org/10.1007/s00436-017-5425-y

Pérez H, de Ariza JS. Evaluación de la hoja del árbol de caulote (Guazuma ulmifolia, Lam), como alimento para humanos. Revista Científica de la Facultad de Ciencias Químicas y Farmacia 2011, 21(2), 27-33. ISSN-e: 2224-5545. [August 20, 2017]. URL: https://dialnet.unirioja.es/servlet/articulo?codigo=5069951

H Pérez JS. de Ariza Evaluación de la hoja del árbol de caulote (Guazuma ulmifolia, Lam), como alimento para humanos.Revista Científica de la Facultad de Ciencias Químicas y Farmacia201121227335545https://dialnet.unirioja.es/servlet/

Possenti RA, Franzolin R, Schammas EA, Assumpção JJ, Shiraishi RT, Lima MA. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia 2008; 37(8): 1509-1516. http://dx.doi.org/10.1590/S1516-35982008000800025

RA Possenti R Franzolin EA Schammas JJ Assumpção RT Shiraishi MA. Lima Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos.Revista Brasileira de Zootecnia200837815091516http://dx.doi.org/10.1590/S1516-35982008000800025

Prieto-Manrique E, Vargas-Sánchez JE, AnguloArizala J, Mahecha-Ledesma L. Ácidos grasos, fermentación ruminal y producción de metano, de forrajes de silvopasturas intensivas con Leucaena. Agronomía Mesoamericana 2016;27(2):337-352. http://dx.doi.org/10.15517/am.v27i2.24386

E Prieto-Manrique JE Vargas-Sánchez J AnguloArizala L. Mahecha-Ledesma Ácidos grasos, fermentación ruminal y producción de metano, de forrajes de silvopasturas intensivas con Leucaena.Agronomía Mesoamericana2016272337352http://dx.doi.org/10.15517/am.v27i2.24386

Ramos-Morales E, de la Fuente G, Duval S, Wehrli C, Bouillon M, Lahmann M, Newbold CJ. Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure. Frontiers in microbiology 2017; 8: 399. https://doi.org/10.3389/fmicb.2017.00399

E Ramos-Morales G de la Fuente S Duval C Wehrli M Bouillon M Lahmann CJ. Newbold Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure.Frontiers in microbiology20178399https://doi.org/10.3389/fmicb.2017.00399

Rivera JE, Molina IC, Donneys G, Villegas G, Chará J, Barahona R. Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development 2015;27(4).[August12,2020].URL: http://www.lrrd.cipav.org.co/lrrd27/4/rive27076.html

JE Rivera IC Molina G Donneys G Villegas J Chará R. Barahona Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche.Livestock Research for Rural Development2015274http://www.lrrd.cipav.org.co/lrrd27/4/rive27076.html

Rodríguez R, Mota M, Castrillo C, Fondevila M. In vitro rumen fermentation of the tropical grass Pennisetum purpureum and mixtures with browse legumes: effects of tannin contents. Journal of animal physiology and animal nutrition 2010; 94(6): 696-705. https://doi.org/10.1111/j.1439-0396.2010.01001.x

R Rodríguez M Mota C Castrillo M. Fondevila In vitro rumen fermentation of the tropical grass Pennisetum purpureum and mixtures with browse legumes: effects of tannin contents.Journal of animal physiology and animal nutrition2010946696705https://doi.org/10.1111/j.1439-0396.2010.01001.x

Rojas S, Pérez JO, Elghandour MM, CiprianoSalazar M, Avila-Morales B, Camacho-Díaz LM, Soto MC. Effect of polyethylene glycol on in vitro gas production of some non-leguminous forage trees in tropical region of the south of Mexico. Agroforest syst 2015; 89(4): 735-742. https://doi.org/10.1007/s10457-015-9796-8

S Rojas JO Pérez MM Elghandour M CiprianoSalazar B Avila-Morales LM Camacho-Díaz MC. Soto Effect of polyethylene glycol on in vitro gas production of some non-leguminous forage trees in tropical region of the south of Mexico.Agroforest syst2015894735742.https://doi.org/10.1007/s10457-015-9796-8

Roncallo F, Sierra B, Castro AM, Roncallo E, Belisario A, Castro E. Rendimiento de forraje de gramíneas de corte y efecto sobre calidad composicional y producción de leche en el Caribe seco. Corpoica cienc tecnol agropecu 2012; 13(1): 71-78. https://doi.org/10.21930/rcta.vol13_num1_art:242

F Roncallo B Sierra AM Castro E Roncallo A Belisario E. Castro Rendimiento de forraje de gramíneas de corte y efecto sobre calidad composicional y producción de leche en el Caribe seco.Corpoica cienc tecnol agropecu20121317178https://doi.org/10.21930/rcta.vol13_num1_art:242

Sampaio CB, Detmann E, Lazzarini I, Souza MA, Paulino MF, Valadares Filho SD. Rumen dynamics of neutral detergent fiber in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia 2009; 38(3): 560-569. https://doi.org/10.1590/S1516-35982009000300023

CB Sampaio E Detmann I Lazzarini MA Souza MF Paulino SD. Valadares Filho Rumen dynamics of neutral detergent fiber in cattle fed low-quality tropical forage and supplemented with nitrogenous compoundsRevista Brasileira de Zootecnia2009383560569https://doi.org/10.1590/S1516-35982009000300023

SAS Institute Inc. Ver. 9.1.3 SAS/STAT User’s Guide. Cary, NC, USA. 2002-2003.

SAS Institute Inc. Ver. 9.1.3 SAS/STAT User’s Guide.CaryNC, USA2003

Smith P, Haberl H, Popp A, Erb KH, Lauk C, Harper R, Masera O. How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Glob chang biol 2013; 19(8): 2285-2302. https://doi.org/10.1111/gcb.12160

P Smith H Haberl A Popp KH Erb C Lauk R Harper O. Masera How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?.Glob chang biol201319822852302https://doi.org/10.1111/gcb.12160

Soltan YA, Morsy AS, Lucas RC, Abdalla AL. Potential of mimosine of Leucaena leucocephala for modulating ruminal nutrient degradability and methanogenesis. Anim Feed Sci Technol 2017; 223, 30-41. https://doi.org/10.1016/j.anifeedsci.2016.11.003

YA Soltan AS Morsy RC Lucas AL. Abdalla Potential of mimosine of Leucaena leucocephala for modulating ruminal nutrient degradability and methanogenesisAnim Feed Sci Technol20172233041https://doi.org/10.1016/j.anifeedsci.2016.11.003

Slyter LL, Satter LD, Dinius DA. Effect of ruminal ammonia concentration on nitrogen utilization by steers. Journal of Animal Science 1979; 48(4): 906-912. https://doi.org/10.2527/jas1979.484906x

LL Slyter LD Satter DA. Dinius Effect of ruminal ammonia concentration on nitrogen utilization by steers.Animal Science1979484906912https://doi.org/10.2527/jas1979.484906x

Szumacher-Strabel M, Cieślak A. In Guaxiang Liu, editors, Dietary possibilities to mitigate rumen methane and ammonia production. Greenhouse Gases-Capturing, Utilization and Reduction. Croacia InTech; 2012. p. 199-202. http://cdn.intechopen.com/pdfs/30635.pdf

M Szumacher-StrabelCieślak A. In Guaxiang LiuDietary possibilities to mitigate rumen methane and ammonia production.Greenhouse Gases-Capturing, Utilization and Reduction.2012199202http://cdn.intechopen.com/pdfs/30635.pdf

Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 2005; 123: 403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037

MH Tavendale LP Meagher D Pacheco N Walker GT Attwood S. Sivakumaran Anim Feed Sci Technol2005123403419https://doi.org/10.1016/j.anifeedsci.2005.04.037

Tiemann TT, Lascano CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2008; 2(5):790-799. https://doi.org/10.1017/S1751731108001791

TT Tiemann CE Lascano HR Wettstein AC Mayer M Kreuzer HD. Hess Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs.Animal200825790799https://doi.org/10.1017/S1751731108001791

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J.Dairy Sci 1991; 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

PJ Van Soest JB Robertson BA. Lewis Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition.J.Dairy Sci1991741035833597https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wallace RJ, McEwan NR, McIntosh FM, Teferedegne B, Newbold CJ. Natural products as manipulators of rumen fermentation. Asian Australasian Journal of Animal Sciences 2002; 15(10):1458-1468. https://doi.org/10.5713/ajas.2002.1458

RJ Wallace NR McEwan FM McIntosh B Teferedegne CJ. Newbold Natural products as manipulators of rumen fermentationAsian Australasian Journal of Animal Sciences2002151014581468https://doi.org/10.5713/ajas.2002.1458

Wickersham TA, Titgemeyer EC, Cochran RC, Wickersham EE, Gnad DP. Effect of rumendegradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage 1. J Anim Sci 2008; 86(11): 3079-3088. https://doi.org/10.2527/jas.2007-0325

TA Wickersham EC Titgemeyer RC Cochran EE Wickersham DP. Gnad Effect of rumendegradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage 1.J Anim Sci2008861130793088https://doi.org/10.2527/jas.2007-0325

Whitehouse NL, Olson VM, Schwab CG, Chesbro WR, Cunningham KD, Lykos T. Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids. JAnim Sci 1994; 72(5): 1335-1343. https://doi.org/10.2527/1994.7251335x

NL Whitehouse VM Olson CG Schwab WR Chesbro KD Cunningham T. Lykos Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids.JAnim Sci199472513351343.https://doi.org/10.2527/1994.7251335x

Yang CL, Guan LL, Liu JX, Wang JK. Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product. Journal of Zhejiang University-SCIENCE B 2015; 16(8): 709-719. https://link.springer.com/content/pdf/10.1631/jzus.B1500013.pdf

CL Yang LL Guan JX Liu JK. Wang Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product.Journal of Zhejiang University-SCIENCE B2015168709719https://link.springer.com/content/pdf/10.1631/jzus.B1500013.pdf

[2] To cite this article: Ibarra-Rondón AJ, Fragoso-Castilla PJ, Giraldo-Valderrama LA, Mojica-Rodríguez JE. Effect of silvopastoral associations on methane production and in vitro fermentation parameters in a RUSITEC system. Rev Colomb Cienc Pecu 2022; 35(4): 217-232. DOI: https://doi.org/10.17533/udea.rccp.v35n4a02

Declarations

[3] Financial disclosure Funding for this study was provided by the Government of Cesar province (Colombia) and Universidad Nacional de Colombia.

[4] LAG was responsible for the conception of the study; AJI was responsible for data collection, analysis and writing of the manuscript. PJF was responsible for project administration. All authors reviewed, performed a critical reading, and edited the manuscript.