

REVISTA DE EDUCACIÓN FÍSICA

UNIVERSIDAD DE ANTIQUIA | INSTITUTO UNIVERSITARIO DE EDUCACIÓN FÍSICA

Julio - Septiembre 2017 Volumen 6 Número 3

Avaliação da velocidade, agilidade e força de membros inferiores de adolescentes praticantes de tênis de campo

Evaluation of the speed, agility and strength of inferior members of adolescents practicing field tennis

William Cordeiro de Souza

Universidade do Contestado, Brasil. Correo: williammixx@hotmail.com

Anderson Bonette

Universidade do Contestado, Brasil. Correo: andersonbonette@hotmail.com

André de Camargo Smolarek

Universidade Estadual do Centro-Oeste, Brasil. Correo: acsmolarek@irati.unicentro.br

Tácito Pessoa de Souza Junior

Universidade Federal do Paraná, Brasil. Correo: tacitojr@terra.com.br

Luis Paulo Gomes Mascarenhas

Universidade Estadual do Centro-Oeste, Brasil. Correo: masca58@hotmail.com

Resumo

Objetivo: Avaliar as capacidades físicas de velocidade, agilidade e força de membros inferiores (FMI) de adolescentes praticantes de tênis de campo. **Métodos**: A amostra intencional foi composta por 10 adolescentes do sexo masculino, com idade de 14 a 17 anos. Para avaliação da velocidade, agilidade e força de membros inferiores foram realizados os testes sugeridos pelo *Projeto Esporte Brasil (PROESP-BR)*. Na análise dos dados foi utilizada a estatística descritiva (média, desvio padrão, frequência absoluta e relativa), o teste Qui-quadrado (x²) foi utilizado para comparar as proporções obtidas nos testes realizados. **Resultados**: Diante disso, foi observado um número significativo (p<0,05) de adolescentes com a velocidade, agilidade e FMI classificada como fraca. **Conclusão**: Pode-se constatar que os tenistas avaliados encontram-se com suas capacidades físicas abaixo do recomendado.

Palavras-Chave: Adolescentes, Capacidades Físicas, Tênis de Campo.

Abstract

Objective: To evaluate the physical abilities of speed, agility and strength of lower limbs (SLL) of adolescents practicing field tennis. **Methods**: The intentional sample consisted of 10 male adolescents aged 14 to 17 years. To evaluate the velocity, agility and strength of lower limbs, the tests suggested by *Projeto Esporte Brasil (PROESP-BR)* were carried out. The descriptive statistics (mean, standard deviation, absolute and relative frequency) were used in the data analysis. The chi-square test (x2) was used to compare the proportions obtained in the tests performed. **Results**: A significant number (p <0.05) of adolescents were observed with speed, agility and SLL classified as weak. **Conclusion**: It can be verified that the evaluated players are with their physical abilities below the recommended one.

Key-words: Adolescents, Physical Capabilities, Field Tennis.

Introdução

O tênis de campo é um esporte de raquete que surgiu na Inglaterra em 1870 (Lake, 2001). No ano 1988, esse esporte se tornou olímpico (Gonçalves et al., 2016; Llewellyn & Lake, 2017). Já em 1990, o tênis se confirma como um dos esportes mais competitivos (Monte & Monte, 2007).

No Brasil, estima-se que aproximadamente 1,5 milhão de pessoas são adeptos ao esporte (Gonçalves et al., 2016). Atualmente, o tênis têm se destacado como um dos esportes mais praticados no mundo (Cortela et al., 2012). O tênis de campo vem sendo estudado por diversos pesquisadores devido à exigência de habilidades motoras específicas em virtude da complexidade de seus movimentos (Baiget et al., 2014; Hoppe et al., 2014; Longhi et al., 2014; Pereira et al., 2015).

Esse esporte vem sofrendo mudanças, principalmente nas exigências físicas cada vez maiores, melhora nos níveis de treinamento e performance. Em decorrência das características do jogo, o desempenho do tenista durante uma partida exige habilidades físicas que lhe permitam paradas bruscas, acelerações e mudanças de direção (Muniz et al., 2014; Ulbricht et al., 2016).

Sendo assim, as capacidades físicas de velocidade, agilidade e força de membros inferiores (FMI) são imprescindíveis na prática do tênis de campo (Vretaros, 2002; Monte & Monte, 2007; Muniz et al., 2014). Dessa forma, o presente estudo objetivou-se em avaliar as capacidades físicas de velocidade, agilidade e FMI de adolescentes brasileiros praticantes de tênis de campo.

Métodos

A amostra foi composta por 10 adolescentes do sexo masculino que disputam competições regionais e nacionais, com média de idade de 15,5±1,15 (anos), massa corporal 63,2±1,0 (kg), estatura 1,64±0,8 (cm), IMC 23,5±4,0 (kg/m²), que praticam tênis de campo há dois anos, três vezes por semana, com duração média de 2 horas por dia.

Este estudo seguiu as considerações da resolução n° 466/2012 do Conselho Nacional de Saúde. Os participantes e seus responsáveis foram informados dos objetivos do estudo, concordaram e assinaram o Termo de Consentimento Livre e Esclarecido (TCLE).

Foram incluídos no estudo somente os adolescentes que praticam a modalidade de tênis de campo há no mínimo dois anos, com idades entre 14 e 17 anos e que apresentaram o TCLE assinado pelos pais ou responsáveis. Os adolescentes que não atenderam os critérios mencionados foram excluídos do estudo.

Para a avaliação da velocidade, agilidade e FMI foram realizados os testes sugeridos pelo Projeto Esporte Brasil (PROESP-BR) (Gaya & Gaya, 2016). Na realização do teste de velocidade (Corrida de 20 metros) uma pista de 20 metros foi demarcada com três linhas paralelas no solo da seguinte forma: a primeira (linha de partida); a segunda, distante 20 metros da primeira (linha de cronometragem) e a terceira linha, marcada a um metro da segunda (linha de chegada). A terceira linha serve como referência de chegada para o avaliado na tentativa de evitar que ele inicie a desaceleração antes de cruzar a linha de cronometragem. O resultado foi anotado em segundos e milésimos (Gaya & Gaya, 2016).

No teste da agilidade (Teste do Quadrado) foi formando um quadrado com quatro cones a uma distância de 4m entre eles, assim o atleta realizava uma corrida por fora dos cones, contornando um quadrado. Todos os atletas tiveram duas tentativas para obter o menor tempo possível. O resultado foi anotado em segundos e milésimos (Gaya & Gaya, 2016).

Para o teste da FMI (salto horizontal) os atletas foram colocados atrás de uma linha reta e saltavam de um ponto, onde estavam estáticos, e verificava-se a maior distância alcançada com auxílio de uma fita métrica para a obtenção da medida/distância do salto. Os atletas realizaram duas tentativas, sendo utilizado o maior salto. O resultado foi anotado em centímetros (Gaya & Gaya, 2016). As classificações dos resultados foram realizadas seguindo os pontos de corte sugeridos pelo PROESP-BR.

Na análise dos dados foi utilizada a estatística descritiva (média, desvio padrão, frequência absoluta e relativa), o teste Qui-quadrado (x²) foi utilizado para comparar as proporções obtidas nos testes realizados. Foi adotando um nível de significância de p<0,05. Os dados coletados foram analisados no programa estatístico *Statistical Package for the Social Sciences* (SPSS) 20.0.

Resultados

Na tabela 1 abaixo estão expressos os valores médios encontrados nos teste de velocidade, agilidade e FMI dos tenistas avaliados.

Tabela 1. Descrição da Amostra.

Variáveis	Média	Desvio Padrão
Velocidade (s)	3,49	±0,30
Agilidade (s)	6,63	±0,86
FMI (cm)	179,9	±9,23

Já a tabela 2, apresenta um número significativo de tenistas com a velocidade, agilidade e FMI classificada como fraca.

Tabela 2. Comparações das proporções obtidas nos teste de velocidade, agilidade e FMI.

Teste de Velocidade (20 metros)						
Classificações						
Excelente	n=0	0%				
Muito Bom	n=2	20%				
Bom	n=1	10%	<0,0001			
Razoável	n=2	20%				
Fraco	n=5	50%*				
Teste de Agilidade (Teste do Quadrado)						
Classificações						
Excelente	n=0	0%				
Muito Bom	n=1	10%				
Bom	n=1	10%	<0,0001			
Razoável	n=2	20%				
Fraco	n=6	60%*				
Teste de Força de Membros Inferiores (Salto Horizontal)						
		Classificações				
Fraco	n=8	80%*				
Razoável	n=2	20%				

Bom	n=0	0%	<0,0001
Muito Bom	n=0	0%	
Excelente	n=0	0%*	

Nota da Tabela: *Nível de significância adotado p<0,05; n: Número de indivíduos; % Frequência Relativa.

Discussão

O presente estudo objetivou-se em avaliar as capacidades físicas de velocidade, agilidade e FMI de adolescentes praticantes de tênis de campo e foi constatado um número significativo (p<0,05) de adolescentes com a velocidade, agilidade e FMI classificada como fraca.

Durante uma partida de tênis, o atleta utiliza aproximadamente 70% de sua capacidade anaeróbia alática, 20% de anaeróbica lática e 10% de aeróbica, respectivamente. Mas vale ressaltar que estas variações metabólicas variam de acordo com a duração e intensidade do jogo, que nesse desporto são determinadas pela velocidade imprimida à bola (Moraes et al., 2006). Deste modo, podemos destacar que as variáveis de velocidade, agilidade e força são imprescindíveis nesse esporte (Kovacs, 2006).

Em tal caso, o tenista necessita de uma preparação eficiente nas variáveis predominantes (velocidade, agilidade e força) (Durigan et al., 2013). Fato não encontrado nos adolescentes avaliados no presente estudo, que apresentaram resultados negativos nas variáveis mensuradas.

De acordo com Euckydes et al., (2005) entre os 7 aos 11 anos de idade é o período mais favorável para desenvolvimento da velocidade. Nessa faixa etária, a velocidade aumenta principalmente à custa da frequência e do ritmo dos movimentos. Já aos 12 até 15 anos, em contrapartida, a velocidade cresce devido ao desenvolvimento da força muscular e da força rápida. Sendo assim, a velocidade é um fator de desempenho físico que sofre perdas visíveis com a idade, portanto, quanto mais cedo ela for trabalhada, melhor será sua eficiência.

Quanto à agilidade, Skorodumova (1998) destaca que essa variável de suma relevância neste desporto, pois o tênis contém elementos que obrigam os atletas a reagir a situações novas e imprevisíveis. Lucca & Lucca (2009) argumentam que a velocidade e agilidade parecem ser individuais e cada qualidade específica é dependente da outra. Então, é importante treinar os tenistas em padrões de movimento específicos que são realizados durante os jogos.

O desenvolvimento da velocidade e agilidade sofre influência da força rápida, por isso, em um planejamento de velocidade e agilidade, deve conter exercícios para o desenvolvimento da força

rápida (Souza, 2010). A força é essencial para as solicitações neuromusculares envolvidas no tênis de campo (Vretaros, 2002).

No tênis, devem ser distinguidas diferentes manifestações de força. Basicamente, o tenista necessita da força muscular para deslocar-se rapidamente e para bater a bola. A força explosiva nos membros inferiores é indispensável para ter uma boa capacidade de aceleração. Assim, a força rápida pode permitir ao tenista executar ações por um longo período de tempo, sem perder a velocidade de execução de sua ação motora (Mahn & Gavião, 2010).

Através da literatura pesquisada foi observado que as variáveis de velocidade, agilidade e força são essenciais no tênis de campo. No presente estudo constatou-se que os atletas avaliados apresentaram classificações abaixo do recomendado. Este trabalho limitou-se em avaliar uma amostra reduzida e também, em não apresentar a programação de treinamento realizado pelos tenistas, tal fato ocorreu pelo motivo do treinador não disponibilizar o planejamento de treino. Sugere-se que outros estudos sejam realizados com tenistas para verificar o principiais motivos que inviabilizam uma boa qualidade nas variáveis de velocidade, agilidade e força.

Conclusão

Ao finalizar o estudo, pode-se constatar que os tenistas avaliados encontram-se com suas capacidades físicas abaixo do recomendado para a pratica do tênis de campo.

Referências

- Baiget, E., Fernández, J., Iglesias, X., Vallejo, L., & Rodríguez, F. (2014). On-Court Endurance and Performance Testing in Competitive Male Tennis Players. *Journal of Strength and Conditioning Research*, 28(1), 256-264.
- Cortela, C., Fuentes, J., Aburachid, L., Kist, C., & Cortela, D. (2012). Iniciação esportiva ao tênis de campo: um retrato do programa play and stay à luz da pedagogia do esporte. *Conexões,* 10(2), 214-234.
- Durigan, J., Dourado, A., Santos, A., Carvalho, V., Ramos, M., & Stanganelli, L. (2013). Efeitos do treinamento pliométrico sobre a potência de membros inferiores e a velocidade em tenistas da categoria juvenil. *Revista de Educação Física/UEM*, 24(4), 617-626.
- Euclydes, P., Dantas, E., Marins, J., & Pinto, J. (2005). Qualidades físicas intervenientes e seu grau de importância no tênis de campo. *Revista Mineira de Educação Física*, 13(1), 7-27.

- Gaya, A., & Gaya A. (2016). *Projeto esporte Brasil: manual de testes e avaliação*. Porto Alegre: UFRGS.
- Gonçalves, G., Klering, R., Aires, H., & Balbinotti, C. (2016). Tennis competition's contributions to children's education and personal development. *Journal Physical Education*, 27(e2738), 1-14.
- Hoppe, M., Baumgart, C., Bornefeld, J., Sperlich, B., Freiwald, J., & Holmberg H. (2014). Running Activity Profile of Adolescent Tennis Players during Match Play. *Pediatric Exercise Science*, 26(3), 281-290.
- Kovacs, M. (2006). Applied physiology of tennis performance. *British Journal of Sports Medicine*, 40(5), 381-386.
- Lake, R. (2001). Social Class, Etiquette and Behavioural Restraint in British Lawn Tennis, 1870-1939. *The International Journal of the History of Sport*, 28(6), 876-894.
- Llewellyn, P., & Lake, R. (2017). 'The old days of amateurism are over': the Samaranch revolution and the return of Olympic tennis. *Journal Sport in History*, 36(3), 1-25.
- Longhi, A., Araújo, L., Camaroto, M., & Melo, S. (2014). Biomecânica do Saque no Tênis de Campo: "Estado da arte" e tendência dos estudos. *Revista Brasileira de Ciência e Movimento*, 22(2), 163-172.
- Lucca, L., & Lucca, M. (2009). Aspectos fisiológicos do treinamento do tênis de campo. *EF Deportes*, 14(136).
- Mahn, P., & Gavião, M. (2010). A influência do treinamento resistido em atletas de tênis de campo. *Revista Brasileira de Ciências da Saúde*, 8(24), 3-7.
- Monte, A., & Monte, F. (2007). Testes de agilidade, velocidade de reação e velocidade para o tênis de campo. *Revista Brasileira de Cineantropometria e Desempenho Humano*, 9(4), 401-407.
- Moraes, A., Barbosa, C., & Oliveira, H. (2008). Uma proposta de preparação física em tenistas de 13 a 17 anos a partir dos primeiros resultados obtidos em testes de aptidão física. *Iniciação Científica CESUMAR*, 8(1), 47-51.

- Muniz, M., Mascarenhas, L., Grzelczak, M., Souza, W., Pedrassani, C., Souza, W., Paula, S., & Lima, V. (2014). O efeito agudo do treino de alongamento estático dos músculos ísquios-tibiais na agilidade do tenista. *Conexões*, 12(2), 37-49.
- Pereira, L., Freitas, V., Moura, F., Urso, R., Loturco, I., & Nakamura, F. (2015). Match Analysis and Physical Performance of High-Level Young Tennis Players in Simulated Matches: A Pilot Study. *Journal of Athletic Enhancement*, 4(5).
- Skorodumova, A. (1998). Tênis de campo: treinamento de alto nível. São Paulo: Phorte.
- Souza, R. (2010). Treinamento de força rápida aplicado na preparação física de jovens tenistas. *Inter Science Place*, 3(14), 37-56.
- Ulbricht, A., Fernandez-Fernandez, J., Mendez-Villanueva, A., & Ferrauti, A. (2016). Impact of fitness characteristics on tennis performance in elite junior tennis players. *Journal of Strength and Conditioning Research*, 30(4), 989-998.
- Vretaros, A. (2002). Metodologia do treino de força no tênis de campo. EF Deportes, 8(47).