
VITAE, REVISTA DE LA FACULTAD DE CIENCIAS FARMACÉUTICAS Y ALIMENTARIAS 
ISSN 0121-4004 / ISSNe 2145-2660. Volumen 25 número 1, año 2018
Universidad de Antioquia, Medellín, Colombia. págs. 8-16
DOI: http://dx.doi.org/10.17533/udea.vitae.v25n1a02

1 Docente Escuela de Ingeniería de Alimentos. Facultad de Ingeniería. Universidad del Valle, Cali, Colombia.
2  Msc. Docente Programa de Ingeniería Agroindustrial.  Facultad de Ingeniería. Universidad de San Buenaventura, Cali, Colombia.
3  Docente, Universidad Nacional de Colombia Sede Palmira, Facultad de Ingeniería y Administración, Cali, Colombia.
* Author of correspondence: alfredo.ayala@correounivalle.edu.co

OSMOTIC DEHYDRATION OF GREEN MANGO SAMPLES 
(Mangifera indica L., Filipino Var.) IN TERNARY SOLUTIONS

DESHIDRATACIÓN OSMÓTICA DE MUESTRAS DE MANGO VERDE  
(Mangifera indica L. Var. Filipino) EN SOLUCIONES TERNARIAS

Alfredo A. AYALA-APONTE, PhD.1*; Andrea MOLINA-CORTÉS, MSc2; Liliana SERNA-COCK, PhD.3

Received: August 30th, 2016  Approved: March 22th, 2018

ABSTRACT

Background: in Colombia the consumption of fresh green mango (also known as mango “biche”) is 
quite popular, and is consumed with lemon juice, salt, and honey. However, its high humidity content 
and high water activity makes of mango a highly perishable fruit, thus requiring processing alternatives. 
Osmotic dehydration (OD) is an interesting alternative for the conservation of mango. In OD, binary 
solutions (Solute + water) and ternary solutions (2 Solutes + water), have been traditionally used, however, 
more water removal can be achieved using ternary solutions, which leads to the improved organoleptic 
properties of dehydrated products. Objetives: to evaluate the kinetic water loss (WL), solutes gain (SG), 
weight reduction (WR), water activity (aw), and volume (Shrinking Coefficient, SC)) in green mango 
(Mangifera indica L. Filipino variety) osmotically dehydrated (OD). Additionally, to calculate water and 
solutes diffusivity (Def ) for each treatment. Methods: green mango samples, with maturity scale zero, 
were used. Ternary solutions of sucrose at 40% and NaCl at 3, 6 and 9% were used for OD. The binary 
solution of sucrose with water as control treatment, was used. In the osmotic process samples were taken 
out at different times of OD (15, 30, 60, 90, 180, 240, and 300 min). Results: the findings show that at 
a higher concentration of NaCl, the dehydration kinetics was more rapid, aw and SC were smaller and 
water and solutes Def were higher. The samples dehydrated with the greatest solutes concentration (40 
- 9%) reached the highest WL, SG, and WR with 89.52, 13.10, and 46.68%, respectively. Coefficients 
Defw and Defs showed a magnitude order of 10-10 m2/s, which is within the interval of dehydrated foods. 
Conclusions: this research showed that binary (sucrose + water) and ternary (NaCl + sucrose + water) 
solutions, are suitable for dehydrating green mango, however, the ternary solutions were more effective.

Keywords: Mass transfer, sucrose, NaCl, kinetics.

RESUMEN

Antecedentes: en Colombia el consumo de mango verde fresco (también conocido como mango 
“biche”) es popular, y se consume con zumo de limón, sal y miel. Sin embargo, su alto contenido de 
humedad y alta actividad de agua hace que el mango sea un fruto altamente perecedero, por lo que 
requiere alternativas de procesamiento. La deshidratación osmótica (OD) es una interesante alternative 
para la conservación de mango. En OD se utilizan tradicionalmente soluciones binarias (solute + agua) y 
soluciones ternarias (2 solutos + agua), sin embargo, puede removerse mayor cantidad de agua utilizando 
soluciones ternarias, las cuales permiten mejorar las propiedades organolépticas de productos deshidratados. 
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Objetivos: evaluar las cinéticas de pérdida de agua (WL), ganancia de solutos (SG), reducción de peso 
(WR), actividad de agua (aw) y volumen (coeficiente de encogimiento, SC) en muestras de mango verde 
(Mangifera indica L. Variedad filipino) deshidratadas osmóticamente (OD). Adicionalmente, calcular la 
difusividad (Def) del agua y de solutos, en los distintos tratamientos. Métodos: se usaron mangos verdes 
con escala de madurez cero. En la OD se usaron soluciones ternarias compuestas por sacarosa (40%) y 
NaCl al 3, 6 y 9%. Como tratamiento control se usó una solución binaria de sacarosa más agua. En el 
proceso osmótico las muestras fueron tomadas a diferentes tiempos de OD (15, 30, 60, 90, 180, 240, and 
300 min). Resultados: los resultados mostraron que al incrementar la concentración de NaCl, las WL 
fueron más rápidas, la aw y el SC fueron menores y las de agua y solutos mayores. Las muestras deshidratadas 
con la máxima concentración de solutos (40-9%), alcanzaron las mayores WL, SG y WR con valores de 
59.82, 13.10 y 46.68%, respectivamente. Los coeficientes Defw and Defs mostraron orden de magnitude 
de 10-10 m2/s, valor que se encuentra en el intervalo para alimentos deshidratados. Conclusiones: esta 
investigación mostró que soluciones binarias (sacarosa + agua) y ternarias (NaCl + sacarosa + agua) 
son adecuadas para deshidratar mango verde, sin embargo, las soluciones ternarias fueron más efectivas.

Palabras clave: Transferencia de masa, sacarosa, cloruro de sodio, cinética.

INTRODUCTION

Mango (Mangifera indica L. Filipino variety) is 
one of the most likeable tropical fruits around the 
world, due to its taste, smell, color, and nutritional 
value. It is widely used as a fresh fruit, ripe, and 
in processed products as ingredient in fruit salad, 
ice cream, jam, yoghurt, and cakes, among others 
(1). However, green mango is also used as a fresh 
and processed product. In some countries, mango 
is used to prepare different processed products 
as drinks, cocktails, candy, processed meats and 
vinegar (chutney) and powered products (2, 3).

In Colombia the consumption of fresh green 
mango (also known as mango “biche”) is quite 
popular, and is consumed with lemon juice, salt, 
and honey. The acidity, color, and texture of the 
green fruit, provides to the consumers, agreeable 
taste. However, its high humidity content (0.83 
± 0.03 wb) and high water activity (aw), (0.983 ± 
0.005) (4), makes of mango a highly perishable 
fruit, thus requiring conservation alternatives 
(5). Osmotic dehydration (OD) is an interesting 
alternative for the conservation of diverse 
vegetal products, since it is a non-thermal and 
low-cost process (6). The technique consists in 
partial water removal from a product soaked in 
a hypertonic solution; this removal is due to the 
driving force resulting from the difference of 
osmotic pressure and aw existing between the 

medium and the product to be dehydrated (7, 
8). Along OD, three simultaneous current flows 
take place: a water f low from the product’s 
interior toward the surrounding medium, a 
flow of solids, from the osmotic solution (OS) 
toward the product, and a third f low from 
inherent solutes of product (sugars, organic 
acids, minerals, and vitamins) toward the OS, 
which is quantitatively smaller (9). In OD, 
binary OS have been traditionally used (solute 
+ water) and ternary OS (2 solutes + water), 
however, more water removal can be achieved 
using ternary OS, which leads to the improved 
organoleptic properties of dehydrated products 
(10-12). Sucrose and NaCl are widely used in 
binary and ternary solutions to osmotically 
dehydrated products such as apple (13), melon 
(14), tomato (12), carrot (15), and banana (16). 
Scientific literature reports several studies with 
different conditions of process of OD of ripe 
mango (1, 7, 9, 17-19). However, no research 
about green mango OD has yet been reported. 
The purpose of this study was to evaluate the 
dehydration kinetics (in terms of water loss, 
solutes gain, and weight reduction) and the 
quality parameters, aw and volume in green 
mango samples (Mangifera indica L.), along the 
OD process, using ternary solutions of sucrose 
at 40% and NaCl at 3, 6, and 9%.



10 Vitae a.a. Ayala-Aponte et al.

MATERIALS AND METHODS

Samples preparation

Green mango samples (Mangifera indica L. 
Filipino variety), with maturity scale zero, and 
with similar characteristics (color, and size) were 
used. The fruit was purchased at a local market 
in the municipality of Palmira (Valle del Cauca 
Department – Colombia), washed with potable 
water, peeled with a stainless steel knife, and cut 
into cylindrical samples (15mm diameter and 
15mm height), perpendicular to the axial axis 
of the fruit by using a cylindrical stainless steel 
punch.

The OD process

Ternary OS were prepared in distilled water, 
NaCl, and commercial sucrose, with a volume of 
10 L each. Four OS, one sucrose solution at 40% 
(40°Brix) (w/w) without the addition of NaCl, and 
three sucrose OS at 40% (w/w) with NaCl addition 
(w/w) in concentrations of 3, 6, and 9% were used. 
OS of 40ºBrix + 0% NaCl (40-0), 40ºBrix + 3% 
NaCl (40-3), 40ºBrix + 6% NaCl (40-6), and 
40ºBrix + 9% NaCl (40-9) were obtained. The 
samples were immersed in the different OS at 30 ± 
0.5ºC which had been prepared in plastic container. 
Then OS were constantly shaken at 800 rpm by 
using a mechanical shaker (Ika Labortech Nik, 
US), in order to prevent crusting resulting from the 
presence of the solutes in the surface of the samples. 
The ratio fruit – OS, in terms of weight, was 1:20 to 
guarantee a constant concentration of the OS along 
OS (20, 21), thus avoiding reduction in the driving 
force of the osmotic process (22).

In each osmotic process samples were taken out 
at different times of OD (15, 30, 60, 90, 180, 240, 
and 300 m.), in other to verify weight (m), soluble 
solids (xs), humidity mass fraction (xw), aw, and 
volume (V). Once the samples were taken out of 
the OS, they were quickly washed with distilled 
water, in order to eliminate external remnants 
of OS, and immediately dried, using absorbent 
paper. Three replicates of each treatment were 
performed.

Mass transfer kinetics

The weight reduction (WR), water loss (WL), 
and solutes gain (SG) of the samples by means of 
Equations 1, 2, and 3, respectively were calculated.

WR =
(mt – m0)

⨯ 100 (Equation 1)m0

WL =
(mt – mwt)– (m0 – mw0)

⨯ 100 (Equation 2)m0

SG =
(mt – xst)– (m0 – ms0)

⨯ 100 (Equation 3)m0

Where m is the mass of the sample, and xw and 
xs are the humidity mass fraction and soluble solids 
fraction of green mango, respectively. Subindexes 
0 and t refer to the initial condition of the fruit 
(fresh state) and to its condition after certain time 
t of OD, respectively. For each osmotic treatment, 
mass balances were performed using equation 4, in 
which the summation of the net losses and gains of 
water and solutes (Equations 2 and 3, respectively) 
are compared with the weight reduction of the 
samples (Equation 1).

 WR = WL + SG (Equation 4)

Effective diffusion (Def)

In order to calculate water Defw and solid Defs, the 
analytic solution of Fick’s second law was used. The 
Fick’s second law was applied to finite cylindrical 
geometry, diameter 2r and height 2l, which is 
solved by means of Newman’s rule, considering 
the juxtaposition of a finite cylinder (Equation 5) 
and finite plane plate (Equation 6) (23):

xjt – xje = 4
∞

π2
exp (–r2δ2

n Foj) (Equation 5)∑xj0 – xje π2 r2δ2
n n=1

xjt – xje = 8
∞

1 exp((2n + 1)2 π2
F0j) (Equation 6)∑xj0 – xje π2 (2n + 1) 4

n=1
Where xjt; xj0, and xje are the humidity content 

(xwt; xw0 and xwe) or solutes contents (xst; xs0, and xse) of 
the samples. Subindixes 0, t, and e are the initial time 
of the fruit (fresh fruit), at a time t of OD and the 
equilibrium condition, respectively. r is the radio of 
the cylinders. δ are the roots of Bessel function, first 
class, and zero order. And Foj is number of Furrier 
to mass transfer, for water (Fow) and solids (Fos) 
(Equation 7). Def j is the effective diffusivity(m2/s) of 
each component (Def w y Def s) and l is half the height 
of thecylinders studied.
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F0jj =
Defjt

(Equation 7)
l2

From the conjugation of 5 and 6 Equations, 
the number of Fourrier, for each OD time, was 
calculated. And by means of a Fo vs. t graph, Def 

was determined. Def was isolated from the slope of 
straight line (16, 24).

Analytical determinations

In order to calculate WR, the samples were 
weighed before and after OD, using an analytical 
balance (Mettler Toledo AB204 Model, 0.001g 
precision). The humidity content (MC) through 
the gravimetric method 20.013 of the AOAC 
for sugar-rich fruits was measured. xs were 
determined by measuring the refractive index of 
the liquid phase extracted from the samples, using 
a refractometer (Attago RX-7000) at 20° C, with 
a ± 0.5° precision. The aw was measured with a 
Dew Point Hygrometer (AquaLab 4TE), with 
a 0.0003 sensibility. The volume of the samples 
was calculated by using a digital gauge. With the 
gauge the height and diameter in three points at 
120° of the circumference of the samples were 
measured. The measure of the volume was used to 
determine the Shrinking Coefficient (SC), based 
on Equation 8, which relates the volume of the 
cylindrical samples before (Vo) and after a time t 
of OD (Vt ) (25). 

SC =
Vt

(Equation 8)
V0

Statistical analysis

The effects of the concentration of the osmotic 
solutions on OD kinetics, aw and volume of 
green mango samples was found by means of a 
fully random variance analysis (ANOVA), with 
95% confidence. The analyses were run by using 
the SPSS 18.0.0 (PASW Statistics 18) statistics 
program.

RESULTS

The fresh green mango samples showed an 
average 90.27 ± 1.10% MC; soluble solids of 7.33 
± 0.43% and aw of 0.9969 ± 0.0022. The values 
correspond to the average of 12 lots.

Mass transfer kinetics

The evolution of WL and SG in dehydrated 
green mango samples subject to different osmotic 
treatments is depicted in Figure 1. For a better visual 
effect of the curves, error bars in each point are not 
shown. Yet, the standard deviation fluctuated from 
0.05 to 2.04% for WL and 0.10 to 1.91% for SG. 7 

 

 
Figure 1. Water loss kinetics (Black symbols) and solutes gain (white symbols) of dehydrated 
green mango samples treated in different osmotic solutions. 
 

Figure 2, depicts the evolution of WR in the different treatments along the osmotic 
process. As can be noted, there was weight loss in all the treatments along OD time. The 
ANOVA showed a significant effect (p<0.05) of NaCl addition on WR.  
 

 
Figure 2. Weight reduction as a function of OD time for green mango samples in different ternary 
solutions. 
 

Figure 3, depicts the relationship between WR and (WL+SG) (material balance). 
The curve slopes adjusted to the experimental points showed values close to one in the 
different treatments (varying from 0.9006 to 1.0067).  
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Figure 1. Water loss kinetics (Black symbols) and 
solutes gain (white symbols) of dehydrated green mango 
samples treated in different osmotic solutions.

Figure 2, depicts the evolution of WR in the 
different treatments along the osmotic process. 
As can be noted, there was weight loss in all the 
treatments along OD time. The ANOVA showed a 
significant effect (p<0.05) of NaCl addition on WR. 
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Figure 2. Weight reduction as a function of OD time 
for green mango samples in different ternary solutions.

Figure 3, depicts the relationship between WR 
and (WL+SG) (material balance). The curve slopes 
adjusted to the experimental points showed values 
close to one in the different treatments (varying 
from 0.9006 to 1.0067). 
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Figure 3. Material’s balance for all treatments of green mango samples. 

Water activity variation 
Figure 4, shows the changes in aw in osmotically dehydrated green mango samples 

in different treatments. The statistical analysis showed a significant effect (p<0.05) of NaCl 
solution concentration on  aw. At the end of the OD process (300 min.), the samples binary 
treatment (40-0) reached aw value of 0.9828 ± 0.0008, while the ternary samples (40-3, 40-
6 and 40-9) reached values of 0.9709 ± 0.0007, 0.9309 ± 0.0052 and 0.9063 ± 0.0001, 
respectively.  

 
Figure 4. Evolution of aw in green mango samples along the OD process (Dotted lines correspond 
to aw  of the OS). 
 

Determination of Shrinking Coefficient (SC) 
In Figure 5 the SC of the green mango samples at different times of OD in binary 

and ternary solutions are depicted.  
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Figure 3. Material’s balance for all treatments of green 
mango samples.

Water activity variation

Figure 4, shows the changes in aw in osmotically 
dehydrated green mango samples in different 
treatments. The statistical analysis showed a 
signif icant effect (p<0.05) of NaCl solution 
concentration on aw. At the end of the OD process 
(300 min.), the samples binary treatment (40-0) 
reached aw value of 0.9828 ± 0.0008, while the 
ternary samples (40-3, 40-6 and 40-9) reached 
values of 0.9709 ± 0.0007, 0.9309 ± 0.0052 and 
0.9063 ± 0.0001, respectively. 
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Figure 4. Evolution of aw in green mango samples 
along the OD process (Dotted lines correspond to aw 

of the OS).

Determination of Shrinking Coefficient (SC)

In Figure 5 the SC of the green mango samples 
at different times of OD in binary and ternary 
solutions are depicted. 

When comparing the different treatments, 
signif icant differences ( p<0.05) are found 
between treatments 40-0 and 40-3, and between 
treatments 40-3 and 40-9, while there was no 
statistically signif icant difference ( p>0.05) 

between the other treatments. Although there 
was no difference between the ternary and the 
binary treatments, binary treatment 40-0 (dotted 
line in Figure 5.) shows slightly lower values of 
SC when compared with ternary treatments, thus 
reaching a value of 0.3137 ± 0.0067 at the end of 
the process, while ternary treatments reach values 
higher than 0.3638. 
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Estimation of Effective Diffusitivity (Def)

Table 1, depicts the values of the effective 
diffusion coefficients in the osmotic processes, for 
water transport (Defw) and solids transport (Defs). In 
calculating these coefficients, the first five terms in 
each series were considered (Equations 5 and 6), 
in order to obtain greater convergence of model 
convergence (33). The mass fractions of water and/
or soluble solids of the different OS were used (since 
when t → ∞; xw fruit = xw OS and xs fruit = xs OS).

Table 1. Humidity diffusion coefficients (Defw) and 
solutes diffusion coefficients (Defs) along OD of green 
mango samples in different ternary solutions.

Tratamiento
Def [10-10 m2/s]

Def w R2 Def s R2

40-0 1.003 0.9907 1.106 0.9878

40-3 3.026 0.9787 1.912 0.9817

40-6 4.133 0.9918 2.985 0.9729

40-9 6.356 0.9428 4.487 0.9416

The diffusion coefficients for water varied from 
1.003 to 6.356 x10-10 m2/s and from1.006 to 4.487 
x10-10 m2/s for solids. Both coefficients (Defw and 
Defs) showed a magnitude order of 10-10 m2/s. The 
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ANOVA showed a statistically significant effect 
(p<0.05) of the NaCl concentration of the OS on 
the Defw and Defs. 

DISCUSSION

Mass transfer kinetics

As expected, WL and SG increased in all 
the osmotic treatments, along process time. A 
signif icant effect (p<0.05) of NaCl addition 
to the sucrose solution at 40°Brix on WL was 
observed, because a higher salt concentration 
yielded a higher WL, during all process time. At 
the end of the OD process (5h), the samples in 
treatment 40-0 reached WL equivalent to 34.94 
± 0.80%, and when adding 3, 6, and 9 of NaCl 
to the OS of 40-0, the WL increased to 49.80 ± 
0.32, 54.16 ± 1.67 and 59.82 ± 1.18%, respectively. 
Similar findings have been reported for different 
osmotically dehydrated vegetables (12, 14, 15, 26). 
This behavior suggests a synergic effect between 
sucrose and NaCl in the ternary solution, with an 
osmotic potential greater than that of the binary 
solution (18). Sacchetti et al. (27) report that the 
chemical potential of ternary solutions increases 
with the increase of the solutes concentration. 
Therefore, the addition of NaCl provides a larger 
gradient of osmotic pressure, which intensifies the 
driving force necessary for mass transfer in the 
OD (12). As to the specific influence of NaCl, it 
can produce some structural changes in the cell 
membrane of the fruits, raising its permeability 
(26). Lenart and Flink (28) found that since the 
molecular weight of NaCl (58.49 g/mol) is lower 
than that of sucrose (342.29 g/mol), NaCl is easily 
dissolved through the cytoplasmic membrane 
of vegetable cells, thus creating concentration 
gradients in the vacuoles and cytoplasm, which 
allows for more water extraction from the cells 
(14, 29). On the other hand, sucrose molecules 
easily accumulate on the cytoplasm surface, 
hampering mass transfer (known as “Crusting 
Phenomenon”). In ternary solutions, however, the 
presence of NaCl prevents this phenomenon and, 
consequently, facilitates water f low (27, 28, 29). 

In the case of SG (Figure 1), all treatments 
show soluble solids gains along OD. However, 
and according to the ANOVA and Tukey assay/
test, there was a statistically significant different 
(p<0.05) only between the treatment with a more-
concentrated OS (40-9) and the other treatments 

(40-0, 40-3 and 40-6). At the end of the process 
(300 min), the sucrose treatment (40-0) reached 
10.86 ± 0.97% of SG, while the ternary treatments 
40-3, 40-6 and 40-9 reached SG of 9.87 ± 0.62, 
11.05 ± 0.56 and 13.10 ± 1.66%, respectively. It 
can be said that in all treatments there were fast 
SG in the first 90 min of the process. The rapid 
SG at the beginning of the process may be due to 
the high driving force existing between the OS 
concentration and the liquid phase concentration 
of the fresh sample (30). Likewise, the slow SG 
following the first 90 minutes of the process 
may be caused by the presence of sucrose on the 
surface of the fruit, which prevents solutes from 
getting in (31), and probably provokes the crusting 
phenomenon (28).

WR (Figure 2) is a parameter including the net 
balance of flow of water loss and solute gains along 
the osmotic process. Therefore, the sum of these 
two countercurrent flows leads to the net mass 
variation of the dehydrated samples (32). 

The ANOVA showed a signif icant effect 
(p<0.05) of NaCl addition on WR, which means 
that the greater the NaCl concentration, the higher 
the WR. At 300 min of OD, binary treatment 
40-0 yielded the smallest WR of 25.32 ± 0.02%. 
Rodrigues and Fernandes (14) and Bambicha et 
al. (33) report similar findings in watermelon and 
pumpkin, respectively. Referring to Figure 3, the 
values for R2 (from 0.9927 to 0.9994) indicate the 
reliability of the experimental data of the osmotic 
process.

Water activity variation

It is observed that the dehydrated samples with 
ternary solutions showed greater decrease in aw, 
when these are compared with the samples the 
binary treatment.

The variation in the aw (Figure 4) are associated 
with the WL and SG explained in Figure 1, above. 
According to (34), aw can be reduced by increasing 
the concentration of solids in the liquid phase of the 
samples, be it through water extraction or through 
the addition of new solutes, and the existence of salt 
in the hypertonic solution obstructed the formation 
of compact surface layer, permitting higher rates 
of solid gain and water loss. The increase in salt 
concentrations lowered the water activity of the 
solution with elevated driving (osmotic) force. 
Similar findings are reported for osmotically-
dehydrated potato (30).
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Determination of Shrinking Coefficient (SC)

Low values of SC indicate a greater volume loss, 
while high values indicate lower volume changes or 
lower shrinking associated to higher conservation 
of the integrity of the dehydrated product.

There is significant decrease of the SC in all 
the treatments along the OD time. This behavior 
is associated with water loss and solute gains along 
the osmotic process. Viberg et al. (35) indicated that 
the deformation of the product in the OD process 
depends on the flows of water and solutes inside 
the product. Mayor and Sereno (36), argues that 
the shrinking of a dehydrated product increases 
with the volume of water extracted from it, since 
at a greater water extraction there are higher 
concentration tensions, which weakens the 
product’s structure. 

The samples in ternary treatments underwent 
slightly less volume changes than the ones in binary 
solutions (40-0). These findings suggest that the 
combination of NaCl and sucrose in the OS leads 
to a protecting effect of the solid structure of the 
product, which would imply that a solutes mixture 
accelerates mass transfer kinetics and reduces aw, 
without contributing to the shrinking of osmotically 
dehydrated green mango. Similar findings for have 
been reported for pumpkin OD (37).

Estimation of Effective Diffusitivity (Def)

Coefficients Defw and Defs showed a magnitude 
order of 10-10 m2/s, which is within the interval 
of dehydrated foods (10-12 y 10-8 m2/s) (8). Similar 
results have been reported for other osmotically 
dehydrated fruits and vegetables, such as pineapple 
(38), apple (39), yellow pitahaya (6) and banana (16). 
A good linear adjustment of treatments 40-0, 40-3 
and 40-6 is evident, with R2 values higher than 0.97, 
as well as a reasonable adjustment of treatment 40-9 
which is higher than 0.94. Both diffusion coefficients 
increase as the NaCl concentration of the OD 
increases, facilitating the mass transfer of water and 
solutes of the food. In other words, there is a decrease 
in the matrix resistance of the green mango samples 
to diffuse water and solutes. Chiralt et al. (40) found 
that a greater concentration of solutes in the OS 
increases the effective diffusion coefficient. At the 
same time, the synergic effect between sucrose and 
NaCl to increase the diffusion coefficients of the 
mango samples treated in the ternary OS, noticeable 
in comparison with what was found when they 
were dehydrated in a binary solution. Mercali et al. 

(16) contend that the presence of NaCl in the OD 
affects the mechanism involved in the simultaneous 
elimination flows of water and solutes infiltration, 
thus affecting the diffusion coefficients.

When comparing the diffusion coefficients of 
water and solutes in the ternary treatments, it is 
observed that the ones for Defw higher than those for 
Defs, which indicates a greater speed (less resistance) 
in water transport. Qi et al. (41) state that the addition 
of NaCl to the osmotic medium that already 
contains sucrose reduces the formation of the dense 
superficial layer that limits water transport. This 
behavior suggests that in the OD mango matrixes 
in ternary solutions water transport predominates 
over solids transport. As to binary treatment (40-0), 
the Defs coefficient was slightly higher than the Defw 
coefficient. This may be explained in light findings 
by Nsonzi y Ramaswamy (42) who think that there 
may be a progressive formation of sucrose layer on 
the surface of the food which hampers water exit 
from the sample along the osmotic process crusting 
phenomenon.

CONCLUSIONS

This research showed that binary (sucrose + water) 
and ternary (NaCl + sucrose + water) solutions, are 
suitable for dehydrating green mango (Mangifera L. 
Filipino Var.), however, the ternary solutions were more 
effective, due to the green mango samples had higher 
WL, SG and WR, decreased aw, less loss of volume, 
and higher water and solutes diffusion coefficients. 
In all the treatments, water loss was greater than the 
solute gains, (maximum 62% loss in treatment 40-9); 
this suggests that ternary solutions in OD could be 
a technique for optimum processing of green mango 
samples, serving as pre-treatment for other agro-
industrial process.
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