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ABSTRACT
Malondialdehyde (MDA) is a major genotoxic carbonyl compound generated by lipid peroxidation and is also a
by-product of the arachidonic acid metabolism in the synthesis of prostaglandins. MDA has been shown to be
mutagenic in bacterial and mammalian systems

 
and carcinogenic in rodents. Besides, it is known that MDA

reacts with DNA to form adducts with deoxyguanosine, dG, deoxyadenosine, dA, and deoxycytidine, dC: M1G,
M1A and M1C, respectively.
In this paper we present a density functional theoretical study of the several nucleophilic additions followed by
eliminations of MDA with dG, dA, and dC. Due to the size of the adducts, the ribofuranoside chain has not been
taking into account in the calculations because this part of the molecule is far of the reaction centers and does not
participate in the reactions. Therefore, guanine, adenine, and cytosine have been taken as model compounds and
their adducts with MDA have been calculated in order to obtain the reaction profiles and the adducts stabilities.
All of the studied reactions have been modeled in the gas phase at 298.15 K and 1 atm. Taking into account the
free energies of the reactants and the final adducts, it is observed that the three reactions are endergonic. It would
be expected that the adduct with cytosine will be the most abundant and the one with guanine the less. However,
the first step of the reaction presents a lower barrier in the reaction of MDA with guanine indicating that probably
the kinetic factor is more important in the formation of these adducts.
Keywords: DFT, computational methods, mutagenesis, malondialdehyde, DNA adducts.

RESUMEN
Malodialdéhido (MDA) es el mayor compuesto carbonílico genotóxico, generado por la peroxidación lipídica y
es también un subproducto del metabolismo del ácido araquidónico en la síntesis de prostaglandinas. Se ha
mostrado que es mutagénico en bacterias y en células mamarias y cancerigeno en roedores. Es también conocido
que el MDA reacciona con DNA para formar aductos deoxiguinosina, dG, deoxiadenosina, dA, and deoxicitosina,
dC: M1G, M1A and M1C, respectivamente.
En este trabajo presentamos un estudio utilizando la teoría de funcionales de densidad(DFT) de las diversas
reacciones de adición nucleofílica, seguidas de eliminación (AN-E) de MDA con dG, dA y dC. Debido a el gran
tamaño, la parte ribofuranósida no se ha tenido en cuenta dado que está alejada del centro de la reacción. De esta
forma, la guanina, adenina y citosina han sido tomadas como compuestos modelos y sus aductos con MDA han
sido calculados con el fin de obtener los perfiles de reacción y la estabilidad de los aductos.
Todas las reacciones estudiadas se modelaron en fase gaseosa a 298.15 K y 1 atm. Tomando en cuenta las energías
libres de los reactantes y los aductos finales, se observa que las reacciones globales son endergónicas. Se esperaría
que el aducto mas abundante sea con citosina y el de menor cantidad con la guanina. No obstante lo anterior, el
primer paso de las reacciones presenta una barrera energética baja en la adición de MDA con guanina, indicando
que probablemente es el factor cinético el predominante en la formación de este tipo de aductos.
Palabras clave: DFT, método computacional, mutagénesis, malondialdehido, aductos de DNA.

1 Facultad de Ciencias. Instituto de Zoología, Casilla 567, Universidad Austral de Chile, Valdivia, Chile
2 Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119-28006, Madrid, España.
3 Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia. Sede Medellín. AA. 3846 Med. Col.
* Autor a quien se debe dirigir la correspondencia: squijano@uach.cl  jquijano@unalmed.edu.co



6 VITAE

INTRODUCTION

Lipid peroxidation is a complex process known
to occur in both plants and animals. This process
occurs in three distinct stages: initiation,
propagation and termination. Polyunsaturated
fatty acids present in biological membranes appear
to be particularly sensitive to oxidative damage
due to the lowered bond dissociation energy of
their allylic hydrogens. Once initiated, the process
proceeds as a free radical chain reaction (1). The
progress of these reactions can be monitored by
determination of: lipid hydroperoxides; secondary
products as malondialdehyde, (MDA); ethane and
pentane formation, mainly (2). Thus, lipid
peroxidation and free radicals have been associated
with a number of normal (prostaglandin synthesis,
phagocytosis and ageing) and abnormal
(inflammation, drug toxicity, carcinogenesis,
atherosclerosis and several other pathologies)
physiological processes (3).

Malondialdehyde (MDA) is a major genotoxic
carbonyl compound generated by lipid peroxidation
(4,5) and is also a by-product of the arachidonic
acid metabolism in the synthesis of prostaglandins
(6). It has been shown to be mutagenic in bacterial
and mammalian systems (7) and carcinogenic in
rodents (8).

MDA reacts with DNA to form stable adducts
to deoxyguanosine, dG, deoxyadenosine, dA, and
deoxycytidine, dC: M1G, M1A and M1C,
respectively (9-13), that are possible promutagenic
lesions (see Figure 1). There are several methods
for the determination of M1G. Chaudhary et al.
(14) demonstrated the existence of this adduct in
human liver, white blood cells and pancreas. M1G
residues were detected in all of these tissues at
levels ranging from below the limits of detection
to as high as 1.2 adducts per 106 nucleosides
(approximately 6500 adducts per cell). M1G also
has been detected in human breast tissue by 32P-
post-labeling and in rodent tissues (15,16).

Modification of a single-stranded bacteriopha-
ge genome with MDA followed by transforma-
tion of SOS-induced E. coli strains causes frames-
hift and base pair substitution mutations in the
lacZ� gene carried on the vector (17). Base pair
substitutions are observed at G, A and C resi-
dues which are assumed to arise from the corres-
ponding MDA-DNA adduct at that position
(G�T, A� G and C�T). Site-specific experi-
ments confirm that M1G is mutagenic in E. coli,
inducing transversions to T and transitions to A
(18). Transformation of adducted genomes into
repair-deficient strains suggest that M1G is re-

paired by both bacterial and mammalian nucleo-
tide excision repair pathways and is also repaired
in E. coli by mismatch repair (19,20).

Very recently (21), a study has been devoted to
answer the question, is MDA mutagenic in human
cells? Sequence analysis revealed that the majority
of MDA-induced mutations occurred at GC base
pairs. The most frequent mutations were large
insertions and deletions, but base pairs substitutions
were also detected.

The condensation product of MDA with dG,
with loss of two water molecules includes N2 and
exocyclic amine group (N2) and forms the

Figure 1.  Structures of MDA-DNA adducts.
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exocyclic pyrimido[1,2-a]purin-10(3H)-one,
abbreviated M1G (22, 23). M1G is a mutagenic
DNA lesion and a terminal product of lipid
peroxidation in vivo that may be implicated in
cancer related to lifestyle and diet (23).

The condensation products with dA and dC arise
by addition-elimination of one of the carbonyl
equivalents of MDA with the exocyclic amine groups
to form an oxopropenyl derivate. No evidence for
cyclization of these products has been observed (5).

Very recently (24), it has been developed a no-
vel strategy for the synthesis of the MDA
nucleoside adducts, which significantly improves
their availability.
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In this paper we present a density functional
theory study of the several nucleophilic
additions followed by eliminations of MDA
with dG, dA, and dC. Owing to the size of the
adducts, the ribofuranoside chain has not been
taking into account in the calculations because
this part of the molecule is far of the reaction
centers and does not participate in the reactions.
So, guanine, adenine, and cytosine have been
taken as model compounds and their adducts
with MDA (Figures 2, 3, and 4, respectively)
have been calculated in order to obtain the
reaction profiles and the stabilities of the
adducts.

Figure 2. Structures of all the intermediates in the
formation of the adduct of MDA to guanine.

Figure 3. Structures of all the intermediates in the
formation of the adduct of MDA to adenine.
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Computational Details

Density functional calculations were performed
with the Gaussian98 series of programs (25). Among
the various proposed functionals, we have used the
combination of Becke’s three-parameter hybrid
exchange functional (26) with the Lee, Yang and Parr
correlation functional (27), denoted B3LYP (28).

The geometric parameters for all the reactants,
the transition states (TS), and the products of the
reactions studied were fully optimized at the
B3LYP/6-31G(d) level (29). Each stationary
structure was characterized as a minimum or a
saddle point of first order by analytical frequency
calculations. A scaling factor (30) of 0.9806 for the
zero-point vibrational energies has been used.
Thermal corrections to enthalpy and entropy
values have been evaluated at the temperature of
298 K, according to standard thermodynamics (31).

Intrinsic reaction coordinate (IRC) calculations
(32) have been performed in all cases to verify that

the localized transition state structures connect
with the corresponding minimum stationary
points associated with reactants and products.

Electronic energies, zero-point vibrational
energies, thermal correction to enthalpies, and
entropies, evaluated at the B3LYP/6-31G(d) level,
for all the reactants, transition states, and products,
involved in the reactions of MDA with guanine,
adenine, and cytosine, are collected in Table 1.

RESULTS AND DISCUSSION

All of the studied reactions have been modeled
in the gas phase at 298.15 K and 1 atm. In the
addition reactions to the exocyclic amino group
of guanine, adenine and cytosine (thymine does
not have this amino group) and the corresponding
eliminations of water molecules we have
considered four-membered cyclic transition states
(see Figure 5).

N

N

NH2

H

O

CYTOTS1
TS1B

N

N

NH

H

H

O

OH

O

CYTOPRO1

CYTOTS2 CYTOTS3

N

N

H

N

O

H

O

CYTOPRO2

N

N

NH

H

H

O

O

ADDUCT- C

+        MDA

H2O
H2O

In the reaction of MDA with guanine, a first
intermediate product, GUAPRO1, is formed via
the four-membered cyclic transition state,
GUATS1. This intermediate can eliminate a water
molecule following two different pathways, via
the transition states GUATS2 and GUATS3,
forming two intermediates, GUAPRO2 and
GUAPRO3, with different position of the double
bond formed. After this step, two different
cyclization processes can occur yielding to
GUAPRO2B and GUAPRO3B. At last, the
elimination of a water molecule in GUAPRO2B
via the cyclic transition state GUATS2C produ-
ces an adduct similar to that experimentally
obtained, M1G. The elimination of water in
GUAPRO3B is not possible via a four-membered

Figure 4. Structures of all the intermediates in the
formation of the adduct of MDA to cytosine.
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Figure 5. Postulated addition-elimination mechanism.
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Table 1. Electronic energies, evaluated at the B3LYP/6-31G(d) level, zero-point vibrational energies, ZPE, and
thermal corrections to enthalpies, TCH, in Hartrees, and entropies, S, in cal mol-1 K-1, for all the reactants,

transition states and products involved in the reactions studied.

Species Ee ZPE TCH S

GUANINE -542.55009 0.11709 0.12623 88.63

MDA -267.13973 0.06544 0.07202 76.29

GUATS1 -809.62964 0.18185 0.19622 117.19

GUAPRO1 -809.71089 0.18838 0.20282 116.80

GUATS2 -809.61460 0.18089 0.19542 116.85

GUAPRO2 -733.26217 0.15884 0.17213 114.02

GUATS3 -809.61674 0.18006 0.19483 117.62

GUAPRO3 -733.27399 0.15990 0.17328 112.01

GUATS2B -733.16922 0.15352 0.16566 104.50

GUAPRO2B -733.27318 0.16260 0.17427 102.04

GUATS3B -733.20122 0.15960 0.17188 105.87

GUAPRO3B -733.27846 0.16309 0.17489 102.12

GUATS2C -733.18438 0.15484 0.16665 102.42

GUATS3C -733.17752 0.15652 0.16773 99.16

ADDUCT-G -656.85175 0.13443 0.14475 94.71

ADENINE -467.31817 0.11240 0.12055 83.74

ADETS1 -734.39166 0.17687 0.19045 114.41

ADEPRO1 -734.47812 0.18389 0.19721 111.81

ADETS2 -734.37810 0.17707 0.19053 112.75

ADEPRO2 -658.02100 0.15464 0.16680 107.79

ADETS3 -734.38346 0.17601 0.18975 114.03

ADDUCT-A -658.05299 0.15663 0.16826 103.35

CYTOSINE -394.92801 0.09877 0.10633 80.36

CYTOTS1 -662.00749 0.16486 0.17737 108.09

CYTOPRO1 -662.09175 0.17048 0.18316 108.21

CYTOTS2 -662.00526 0.16420 0.17671 109.39

CYTOPRO2 -585.63487 0.14135 0.15286 103.95

CYTOTS3 -662.00808 0.16363 0.17624 107.58

ADDUCT-C -585.66489 0.14316 0.15417 99.90

H
2
O -76.40895 0.02117 0.02495 45.14
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cyclic transition state. The only possibility is a six-
membered cyclic transition state, forming a bicyclic
species GUATS3C with a higher energy than that
of GUATS2C.

Adenine forms with MDA an intermediate
product, ADEPRO1, via a four-membered cyclic
transition state, ADETS1, and after loses a water
molecule leading to ADEPRO2 and the adduct.

Cytosine reacts with MDA and forms the
intermediate, CYTOPRO1, via a four-membered

cyclic transition state, CYTOTS1, leading to
CYTOPRO2 and the adduct, after the elimination
of a water molecule.

Observing the free energy reaction profiles
(Figures 6, 7, and 8), obtained at the B3LYP/6-
31G(d) level, we can conclude that the most stable
products in the reactions of MDA with guanine,
adenine and cytosine are the adducts similar to
those experimentally obtained (M1G, M1A and
M1C).
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Figure 6. Free energy profile for the reaction of MDA with guanine, obtained at the B3LYP/6-31G(d) level.

Figure 7. Free energy profile for the reaction of MDA with adenine, obtained at the B3LYP/6-31G(d) level.
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In the reaction of MDA with guanine, the
process occurs through the intermediates
GUAPRO3 and GUAPRO3B, more stables and
with lower activation energies than their
alternative processes, although the last elimination
of a water molecule to yield the adduct presents a
higher energy barrier, via the bicyclic transition
state.

Taking into account the free energies of the
reactants and the final adducts, it is observed that
the three reactions are endergonic (see Table 2).
It would be expected that the more abundant
adduct will be that with cytosine, and the less
abundant the adduct with guanine. However, the
first step of the reaction presents a lower barrier
in the reaction of MDA with guanine indicating
that probably the kinetic factor is more important
in the formation of these adducts.
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