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ABSTRACT

This work reports the experimental volumetric properties and also the saturated solubility of indomethacin 
and ethylhexyl triazine in ethyl acetate + ethanol mixtures at 293.15 to 313.15 K and evaluates the validity 
of the Jouyban-Acree (J & A) model to correlate the solubility of these compounds in ethyl acetate + 
ethanol solvent mixtures. The solubility correlation is studied as a function of temperature and cosolvent 
composition. The J & A model requires only the experimental solubility values in the pure solvents at all 
the temperatures under study. The calculated values by using both compounds deviate as mean in 30% 
from experimental solubility values.

Keywords: Indomethacin, ethylhexyl triazone, solubility, ethanol, ethyl acetate, solvent mixtures, 
Jouyban-Acree equation. 

RESUMEN

En este trabajo se evalúa la validez del modelo de Jouyban-Acree (J – A) para la correlación de la 
solubilidad de estos dos agentes de uso farmacéutico en mezclas acetato de etilo + etanol, en función 
de la composición solvente y de la temperatura, en el intervalo entre 293,15 y 313,15 K. El modelo J – A 
requiere únicamente de los valores experimentales de solubilidad de los fármacos en los solventes puros 
en función de la temperatura. Se encuentra que los valores obtenidos con los dos compuestos presentan 
desviaciones cercanas al 30% respecto a los valores experimentales de solubilidad.
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INTRODUCTION

Indomethacin (IMC, molecular structure 
showed in figure 1) is an anti-inflammatory drug 
sometimes used in actual therapeutics (1), while 
ethylhexyl triazone (EHT, molecular structure 
showed in figure 2) is a sunscreen agent widely 
used in the formulation of skin care products (2, 
3). Physicochemical properties of IMC and EHT 
have not been thoroughly studied. In this context, 
it is well known that several physicochemical 
properties such as, the solubility and occupied 
volumes by active ingredients and excipients 
in adequate solutions, are very important for 
pharmaceutical scientists, because they facilitate the 
processes associated to design and development of 
new products in the pharmaceutical and cosmetic 
industries (4).
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Figure 1. Molecular structure of indomethacin.
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Figure 2. Molecular structure of ethylhexyl triazone.

On the other hand, ethyl acetate and ethanol 
have been widely used in drug microencapsulation 
processes (5). Moreover, ethyl acetate + ethanol 
binary system has been widely used as model 
mixed solvent for solubility studies of several drugs 
developed by Bustamante et al (6-13). Recently, 
Jouyban and Acree, 2007 (14) have developed a 
semi-empirical method intended to estimate drugs 
solubilities in this binary solvent system, whereas 
Ruidiaz and Martinez, 2009 (15) and Rodríguez 
et al., 2010 (16) have evaluated the usefulness of 
the Extended Hildebrand Solubility Approach 

to estimate the solubility of indomethacin and 
ethylhexyl triazone at 298.15 K in the same solvent 
system, respectively. Ultimately, Ruidiaz et al., 
2010 have evaluated the volumetric behavior of 
this pharmaceutical model solvent system (17). For 
these reasons, the main objective of this study was 
to evaluate the usefulness of Jouyban-Acree model 
(14) to correlate the equilibrium solubility of two 
pharmaceutical compounds with great difference in 
molar mass and volume, namely, IMC and EHT, 
in binary mixtures conformed by ethyl acetate and 
ethanol as a function of the solvent composition 
and temperature.

THEORETICAL ASPECTS

Several methods to estimate the solubility 
in solvent mixtures have been reported in the 
pharmaceutical and chemical literature. Some 
of them have been challenged recently in the 
correlation of the equilibrium solubility of several 
drugs (18, 19).

As was already exposed (20), the simplest model 
to predict drug solubility in mixtures is the one 
based on the algebraic rule of mixing, which for 
semipolar compounds in binary mixtures takes the 
following form:

solv.232solv.131mix3 logloglog −−− += XfXfX

Equation 1.

where X3-mix is the calculated solubility of 
solute in the mixture considered, X3-solv.1 is the 
solute solubility in the neat solvent 1, X3-solv.2 is the 
solute solubility in the neat solvent 2, and f1 and 
f2 are the volume fractions of both solvents in the 
mixture free of solute. The first one is calculated, 
by assuming volumes additivity as follows:

 21
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where, V1 and V2 are the volumes of solvents 1 and 
2, respectively (21). It is clear that f2 is equal to 1 – f1.

Nevertheless, it was found experimentally 
that the behavior of several lipophilic solutes 
deviate notoriously of this simple additive rule 
of solubility, in particular when the solvents used 
are amphiprotic. As good attempt to consider the 
deviations non taken into account by equation 
1 Jouyban and Acree proposed the equation 3, 
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where T is the absolute temperature and J
i
 are the 

respective polynomial coefficients. J
i
 coefficients 

present theoretical meaning because each one of 
them is a function of the interaction energies among 
two and three bodies, which in turn describe the 
attractions among the different molecules present in 
solution. Equation 3 is derivate from the equation 
originally proposed by Redlich and Kister, 1948 
(22), and its development as well as its meaning has 
been described previously in the literature (23, 24).

    

Equation 3.

Recently, Jouyban and Acree, 2007 (14) processed 
by regression analysis the solubility values (as mole 
fraction) of several drugs in AcOEt + EtOH 
mixtures reported in the literature (6-13), in front 
to equation 3, obtaining the equations 4 and 5,

Equation 4.

where the J – A Factor is defined according to the 
following expression:

Equation 5.

In equations 4 and 5 the solvent 1 is the one 
where the solubility is greatest between both neat 
solvents considered. As examples, for the solubility 
of caffeine in AcOEt + EtOH mixtures, AcOEt is 
the solvent 1 and EtOH is the solvent 2, whereas 
for the solubility of acetaminophen in the same 
solvent system, EtOH is the solvent 1 and AcOEt 
is the solvent 2 (14).

MATERIALS AND METHODS

Materials

In this investigation the following reagents 
and materials were used, indomethacin BP (25), 
ethylhexyl triazone obtained from BASF, ethyl 

acetate A.R. Merck (AcOEt), absolute ethanol A.R. 
Merck (EtOH), molecular sieve Merck (numbers 3 
and 4, pore size 0.3 and 0.4 nm, respectively), and 
Durapore® 0.45 µm filters from Millipore Corp. 

Solvent mixtures preparation

The dehydrated ethanol employed was 
maintained over molecular sieve (Merck Number 
3, 0.3 nm in pore diameter) to obtain a dry solvent 
previously to prepare the solvent mixtures. The 
ethanol dryness was demonstrated by the respective 
density value obtained (0.7854 g cm–3 at 298.15 K), 
which was thus coincident with those reported in 
the literature (26, 27). All AcOEt + EtOH solvent 
mixtures were prepared in quantities of 10.00 g by 
mass using an Ohaus Pioneer TM PA214 analytical 
balance with sensitivity ± 0.1 mg, in mass fractions 
from 0.10 to 0.90 varying by 0.10, in order to study 
nine mixtures and both pure solvents.

Solubility determination

An excess of IMC or EHT was added to each 
organic solvent evaluated in stoppered dark glass 
f lasks. Solid-liquid mixtures were placed on 
thermostatic baths (Neslab RTE 10 Digital One 
Thermo Electron Company) kept at temperatures 
from 293.15 ± 0.05 K to 313.15 ± 0.05 K with 
sporadic stirring for at least three days to reach 
the solution equilibrium (this equilibrium time 
was established by quantifying the IMC or EHT 
concentration up to obtain constant values). Once at 
equilibrium, supernatant solutions were filtered (at 
isothermal conditions) to remove insoluble particles 
before the respective composition analyses. IMC 
or EHT concentrations were determined by mass 
balance by weighing a specified quantity of the 
respective saturated solution and allowing the solvent 
evaporation up to constant mass. All the solubility 
experiments were run at least in triplicate. In order 
to make the equivalence between volumetric and 
gravimetric concentration scales, the density of the 
saturated solutions was determined with a digital 
density meter (DMA 45 Anton Paar) connected to 
the same recirculating thermostatic baths.

Deviations calculation

As a deviation criterion between single 
experimental and calculated values by equations 
1 and 5, the percentage deviations (%D) were 
calculated considering the unmodified solubility 
values according to following equation:
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On similar way, as a general criterion of the 
usefulness of both equations the mean percentage 
deviations (M%D) were calculated by means of 
the equation 7, where n is the number of mixtures 
compositions considered.

∑
=













 −
=

n

i X

XX

n
DM

1
expt

mix-3

expt

mix-3

calc

mix-3100
%  Equation 7.

RESULTS AND DISCUSSION

It is well known that the volumetric concentration 
scales depend on temperature varying according 
to their respective thermal-volume expansion 
coefficients (α). For this reason, table 1 shows 
the temperature dependence of volume fraction 

in AcOEt + EtOH mixtures with the mass 
composition varying in 0.10 in mass fraction 
(µAcOEt ). The respective statistical description is 
also showed. 

Although the a values for AcOEt and EtOH are 
slightly different, 1.397 x 10–3 K–1 and 1.123 x 10–3 
K–1, respectively (17), the temperature dependence 
of f with temperature is relatively low, being in the 
nine cases lower than 0.19%, which for practical 
purposes is considered insignificant. Moreover, the 
mean values obtained are similar to those obtained 
at 303.15 K. For this reason, in challenging equa-
tions 1 to 5 the values obtained at this temperature 
were used on the same way as it was done in other 
similar investigations (28-30).

Table 2 shows the experimental values of 
equilibrium solubility for both pharmaceutical 
compounds expressed as decimal logarithms of 
mole fraction. The values used as input in equations 
1 to 5 were those obtained in neat solvents at all 
temperatures.

Table 1. Volume fraction of AcOEt in AcOEt + EtOH mixtures as a function of mixtures composition and 
temperature

µAcOEt

fAcOEt %VC (b)

293.15 K 298.15 K 303.15 K 308.15 K 313.15 K Mean (SD) (a)

0.1000 0.1125 0.1123 0.1122 0.1120 0.1120 0.1122 (0.0002) 0.19

0.2000 0.2219 0.2216 0.2214 0.2211 0.2210 0.2214 (0.0004) 0.17

0.3000 0.3283 0.3280 0.3277 0.3274 0.3272 0.3277 (0.0005) 0.14

0.4000 0.4319 0.4316 0.4312 0.4309 0.4307 0.4313 (0.0005) 0.12

0.5000 0.5328 0.5325 0.5321 0.5317 0.5315 0.5321 (0.0005) 0.10

0.6000 0.6311 0.6308 0.6304 0.6301 0.6299 0.6305 (0.0005) 0.08

0.7000 0.7269 0.7266 0.7263 0.7260 0.7258 0.7263 (0.0004) 0.06

0.8000 0.8202 0.8200 0.8198 0.8196 0.8194 0.8198 (0.0003) 0.04

0.9000 0.9112 0.9111 0.9110 0.9109 0.9108 0.9110 (0.0002) 0.02

(a) SD is standard deviation. (b) %VC is percentage variation coefficient.

Table 2. Experimental solubility of IMC and EHT expressed as decimal logarithm as a function of mixtures 
composition and temperature. Values in parentheses are percentage variation coefficients on equilibrium solubility.

µAcOEt fAcOEt 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K

IMC

0.0000 0.0000 –2.479 (1.5) –2.380 (1.1) –2.309 (0.4) –2.208 (0.2) –2.131 (0.3)

0.1000 0.1122 –2.254 (1.9) –2.182 (1.1) –2.106 (0.2) –2.015 (1.3) –1.948 (0.2)

0.2000 0.2214 –2.054 (0.8) –1.998 (2.6) –1.927 (1.2) –1.844 (0.6) –1.785 (0.1)

0.3000 0.3277 –1.884 (0.5) –1.822 (0.4) –1.772 (0.4) –1.703 (0.5) –1.653 (0.6)

0.4000 0.4312 –1.735 (2.5) –1.688 (1.8) –1.639 (1.3) –1.585 (0.7) –1.544 (0.7)

0.5000 0.5321 –1.622 (1.8) –1.581 (1.9) –1.545 (0.5) –1.496 (0.1) –1.463 (0.2)

0.6000 0.6304 –1.542 (2.0) –1.503 (1.6) –1.469 (2.6) –1.432 (0.4) –1.408 (0.2)

0.7000 0.7263 –1.510 (0.4) –1.473 (0.6) –1.442 (0.4) –1.408 (0.4) –1.385 (0.3)

0.8000 0.8198 –1.531 (0.1) –1.502 (0.1) –1.462 (0.4) –1.427 (1.1) –1.399 (0.3)
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µAcOEt fAcOEt 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K

IMC

0.9000 0.9110 –1.646 (0.4) –1.605 (1.6) –1.565 (0.6) –1.527 (0.6) –1.488 (0.3)

1.0000 1.0000 –1.980 (1.6) –1.922 (0.2) –1.862 (2.9) –1.804 (1.7) –1.745 (0.6)

EHT

0.0000 0.0000 –3.153 (1.3) –3.039 (0.6) –2.913 (1.3) –2.731 (1.8) –2.561 (1.7)

0.1000 0.1122 –2.791 (1.1) –2.691 (0.3) –2.562 (0.8) –2.374 (0.1) –2.142 (0.8)

0.2000 0.2214 –2.463 (0.8) –2.348 (0.6) –2.186 (0.4) –1.953 (0.8) –1.716 (0.3)

0.3000 0.3277 –2.122 (0.9) –2.010 (1.1) –1.834 (0.3) –1.612 (1.2) –1.416 (1.2)

0.4000 0.4312 –1.767 (1.7) –1.716 (0.6) –1.553 (1.7) –1.377 (3.1) –1.243 (0.3)

0.5000 0.5321 –1.531 (2.1) –1.506 (0.3) –1.371 (0.7) –1.240 (1.2) –1.138 (0.6)

0.6000 0.6304 –1.364 (1.3) –1.359 (0.8) –1.253 (0.4) –1.142 (2.2) –1.065 (0.8)

0.7000 0.7263 –1.273 (1.1) –1.270 (1.3) –1.179 (0.4) –1.079 (1.8) –1.022 (0.1)

0.8000 0.8198 –1.216 (0.5) –1.211 (0.3) –1.136 (0.2) –1.061 (0.2) –1.001 (0.4)

0.9000 0.9110 –1.221 (1.8) –1.210 (0.5) –1.141 (0.8) –1.061 (1.1) –0.995 (2.6)

1.0000 1.0000 –1.326 (2.0) –1.299 (0.6) –1.214 (0.5) –1.132 (1.2) –1.056 (0.1)

On the other hand, f igure 3 shows the 
experimental solubility of both drugs at 298.15 K 
expressed as mole fraction. It is clear that maximum 
solubility is obtained in solvent mixtures instead 
of neat solvents, although the greatest solubility in 
neat solvents is obtained in AcOEt for both drugs. 
In this way, for these compounds the solvent 1 is 
AcOEt and the solvent 2 is EtOH.
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Figure 3. Experimental solubility expressed as mole 
fraction of IMC (ο) and EHT () as a function of 

AcOEt volume fraction in AcOEt + EtOH mixtures 
at 298.15 K.

Tables 3 and 4 show the values of logarithmic 
solubility calculated by means of equations 1 and 4 as 
a function of mixtures composition and temperature 
for both drugs, respectively. Individual and group 
percentage deviations with respect to equilibrium 
solubilities are also showed in tables 3 and 4. It is 
important to note that these methods were selected 
for this study because they are the most simple 
among those described in the literature (18).

By comparing the predictive results obtained 
for both drugs it is clear that Jouban-Acree model 
(equations 4 and 5) is better than additive behavior 
(equation 1), because of their M%D values, namely, 
29 ± 13% for IMC and 33 ± 17% for EHT in the 
first case, in front to 60 ± 14% for IMC and 62 ± 
15% for EHT in the case of equation 1. Thus, J – 
A model would be useful if equilibrium solubility 
estimations within 30% in uncertainty are allowed.

To see more clearly these effects, figure 4 shows 
the differences obtained between experimental 
solubilities for both drugs at 298.15 K in front to 
those calculated by means of equation 1. figure 
4 also shows the differences obtained between 
equations 1 and 4 (and 5), respectively.
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Table 3. Solubility of IMC and EHT calculated by means of additive-logarithmic model (equation 1) expressed 
as decimal logarithm as a function of mixtures composition and temperature. Values in parentheses are 

percentage deviations calculated according to equation 6.

fAcOEt 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K M%D (a)

IMC
0.1122 –2.423 (32.2) –2.328 (28.7) –2.259 (29.6) –2.163 (28.8) –2.087 (27.5) 29.4 ± 1.7
0.2214 –2.369 (51.5) –2.278 (47.6) –2.210 (47.9) –2.119 (46.9) –2.045 (45.1) 47.8 ± 2.3
0.3277 –2.316 (63.0) –2.230 (60.9) –2.163 (59.3) –2.076 (57.7) –2.004 (55.5) 59.3 ± 2.9
0.4312 –2.264 (70.4) –2.182 (67.9) –2.116 (66.7) –2.034 (64.5) –1.964 (62.0) 66.3 ± 3.2
0.5321 –2.214 (74.4) –2.136 (72.1) –2.071 (70.2) –1.993 (68.2) –1.926 (65.5) 70.1 ± 3.4
0.6304 –2.165 (76.2) –2.091 (74.2) –2.027 (72.4) –1.954 (69.9) –1.888 (66.9) 71.9 ± 3.6
0.7263 –2.117 (75.3) –2.047 (73.3) –1.984 (71.3) –1.915 (68.9) –1.851 (65.8) 70.9 ± 3.7
0.8198 –2.070 (71.1) –2.004 (68.6) –1.942 (66.9) –1.877 (64.5) –1.815 (61.6) 66.5 ± 3.7
0.9110 –2.025 (58.2) –1.963 (56.1) –1.902 (54.0) –1.840 (51.4) –1.779 (48.9) 53.7 ± 3.7

60 ± 14
EHT

0.1122 –2.948 (30.3) –2.843 (29.5) –2.722 (30.8) –2.552 (33.6) –2.392 (43.7) 33.6 ± 5.9
0.2214 –2.749 (48.2) –2.653 (50.5) –2.537 (55.4) –2.377 (62.4) –2.228 (69.2) 57.1 ± 8.7
0.3277 –2.554 (63.1) –2.468 (65.2) –2.356 (70.0) –2.207 (74.6) –2.068 (77.7) 70.1 ± 6.2
0.4312 –2.365 (74.8) –2.288 (73.2) –2.180 (76.4) –2.042 (78.4) –1.912 (78.5) 76.3 ± 2.3
0.5321 –2.181 (77.6) –2.113 (75.3) –2.009 (77.0) –1.880 (77.1) –1.760 (76.1) 76.6 ± 0.9
0.6304 –2.001 (76.9) –1.942 (73.9) –1.842 (74.2) –1.723 (73.7) –1.612 (71.6) 74.1 ± 1.9
0.7263 –1.826 (72.0) –1.775 (68.7) –1.679 (68.4) –1.570 (67.7) –1.468 (64.2) 68.2 ± 2.8
0.8198 –1.655 (63.6) –1.612 (60.3) –1.520 (58.7) –1.420 (56.3) –1.327 (52.9) 58.4 ± 4.1
0.9110 –1.488 (46.0) –1.454 (43.0) –1.366 (40.4) –1.274 (38.8) –1.190 (36.2) 40.9 ± 3.8

62 ± 15

(a) M%D is mean percentage deviation at each mixture composition calculated according to equation 7. (b) These M%D values are overall mean 
percentage deviations including all compositions.

Table 4. Solubility of IMC and EHT calculated by means of Jouyban-Acree model (equations 4 and 5) 
expressed as decimal logarithm as a function of mixtures composition and temperature. Values in parentheses 

are percentage deviations calculated according to equation 6.

fAcOEt 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K M%D (a)

IMC
0.1122 –2.282 (6.2) –2.190 (1.8) –2.123 (3.7) –2.029 (3.1) –1.956 (1.8) 3.3 ± 1.8
0.2214 –2.145 (18.9) –2.059 (13.1) –1.994 (14.4) –1.907 (13.4) –1.836 (11.1) 14.2 ± 2.9
0.3277 –2.041 (30.4) –1.960 (27.2) –1.897 (25.0) –1.815 (22.8) –1.747 (19.6) 25.0 ± 4.1

0.4312 –1.955 (39.6) –1.878 (35.4) –1.817 (33.7) –1.740 (30.0) –1.675 (26.0)
33.0 

 ± 5.2
0.5321 –1.881 (44.9) –1.809 (40.8) –1.749 (37.5) –1.677 (34.0) –1.614 (29.4) 37.3 ± 6.0
0.6304 –1.823 (47.6) –1.755 (44.0) –1.696 (40.8) –1.628 (36.3) –1.567 (30.8) 39.9 ±6.6
0.7263 –1.789 (47.4) –1.725 (43.9) –1.667 (40.5) –1.603 (36.1) –1.544 (30.6) 39.7 ± 6.6
0.8198 –1.792 (45.2) –1.731 (41.1) –1.674 (38.6) –1.613 (34.8) –1.555 (30.1) 38.0 ± 5.8
0.9110 –1.850 (37.5) –1.791 (34.8) –1.733 (32.1) –1.674 (28.8) –1.616 (25.5) 31.7 ± 4.7

29 ± 13 (b)

EHT
0.1122 –2.807 (3.6) –2.705 (3.0) –2.586 (5.3) –2.418 (9.7) –2.260 (23.8) 9.1 ± 8.6
0.2214 –2.525 (13.4) –2.434 (18.0) –2.321 (26.6) –2.165 (38.6) –2.019 (50.2) 29.4 ± 5.1
0.3277 –2.280 (30.5) –2.199 (35.2) –2.091 (44.7) –1.946 (53.7) –1.811 (59.8) 44.8 ± 2.2
0.4312 –2.056 (48.6) –1.984 (46.1) –1.881 (53.0) –1.747 (57.4) –1.622 (58.2) 52.7 ± 5.3
0.5321 –1.848 (51.8) –1.785 (47.4) –1.687 (51.7) –1.564 (52.5) –1.449 (51.1) 50.9 ± 2.0
0.6304 –1.659 (49.3) –1.605 (43.3) –1.511 (44.8) –1.398 (44.4) –1.292 (40.7) 44.5 ± 3.1
0.7263 –1.498 (40.4) –1.452 (34.3) –1.362 (34.4) –1.258 (33.7) –1.161 (27.3) 34.0 ± 4.6
0.8198 –1.377 (31.0) –1.339 (25.6) –1.252 (23.3) –1.156 (19.6) –1.067 (14.2) 22.8 ± 6.3
0.9110 –1.314 (19.3) –1.282 (15.3) –1.197 (12.1) –1.108 (10.3) –1.027 (7.0) 12.8 ± 4.7

33 ± 17 (b)

(a) M%D is mean percentage deviation at each mixture composition calculated according to equation 7. (b) These M%D values are overall mean 
percentage deviations including all compositions.
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Figure 4. Logarithmic differences of drugs 
solubilities [experimental value minus calculated value 

according to equation 1] for IMC (ο) and EHT (∆) 
and logarithmic difference of calculated solubilities 
[value according to J – A model (equation 1) minus 
value according to equation 1] (), as a function of 

the AcOEt proportion in AcOEt + EtOH mixtures at 
298.15 K.

Figure 4 shows that differences obtained are 
positive in all cases and dependent on solvent 
composition. Thus, experimental solubilities for 
both compounds are greater than those predicted 
by equations 1 and 4 (and 5). It is interesting to 
note that the greatest experimental IMC solubility 
is found in the same mixture that J – A model 
predicts the maximum solubility, that is, near to 
0.60 in volume fraction of AcOEt. Otherwise, 
the maximum solubility of EHT is found in the 
mixture with composition near to 0.50 in volume 
fraction of AcOEt.

Because the equation 4 (J – A model) is an 
extension of equation 1, figure 4 shows the excess 
factor of Jouyban-Acree (J – A Factor), which is 
equivalent to the logarithmic difference between 
calculated solubilities by means of both equations, 
and it is a global excess solubility function.

CONCLUSIONS

The generated solubility data of two drugs 
in ethyl acetate + ethanol mixtures at various 
temperatures extend the available database of 
solubility data of pharmaceuticals (31) which is 
in high demand in the industry. From all topics 
discussed previously it follows that IMC and EHT 
experimental solubilities present positive deviations 
in front to those predicted by the Jouyban-Acree 
model in the AcOEt + EtOH binary solvent system 
at all compositions studied. These estimation 

differences are within 30% as mean for both drugs 
which makes possible the use of the J – A model 
if these differences are allowed along the different 
stages of design and development of new products 
in the pharmaceutical and cosmetic industries. 
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