Interacción de lipoproteínas de baja densidad con nanotubos de carbono dopados y funcionalizados

  • Juan Esteban Berrio Sierra Universidad Pontificia Bolivariana
  • Jesús Antonio Carlos Cornelio Universidad Michoacana de San Nicolás de Hidalgo
  • Lina Marcela Hoyos Palacio Universidad Pontificia Bolivariana
  • John Bustamante Osorno Universidad Pontificia Bolivariana
Palabras clave: nanotubos de carbono, lipoproteínas de baja densidad (LDL), funcionalización, aterosclerosis

Resumen

La enfermedad cardiovascular aterosclerótica es la principal causa de muerte en el mundo; la acumulación de lipoproteínas provoca daños vasculares e incluso el Infarto Agudo de Miocardio (IAM). La nano-medicina ofrece una prometedora solución con tratamientos para evitar la progresión de estas enfermedades. En la presente investigación se sintetizaron nanotubos de carbono (NTC) con catalizadores de Níquel (Ni) 50%, Cobalto (Co) 50%, mezcla Níquel-Cobalto (Ni-Co) 25%-25% y mezcla Hierro-Cobalto (Fe-Co) 10%-40% vía sol–gel. Los NTC se doparon con moléculas de melamina y se funcionalizaron con fosfatidilcolina para su interacción con lipoproteínas de baja densidad (LDL). La caracterización de los NTC, se realizó mediante las técnicas de Espectroscopía Raman, Microscopia Electrónica de Barrido (SEM), Espectroscopía Infrarroja de Transformada de Fourier (FTIR) y finalmente se hizo un análisis del ángulo de contacto para evaluar la modificación de los nanotubos de carbono, la cual sugiere que los NTC catalizados con Fe-Co presentan una menor adhesión y mayor tensión superficial al contacto con las LDL.

|Resumen
= 29 veces | PDF
= 38 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Juan Esteban Berrio Sierra, Universidad Pontificia Bolivariana

Estudiante de Maestría en Ingeniería, Universidad Pontificia Bolivariana, Facultad de Ingenierías, Escuela de Ciencias de la Salud, Grupo de Investigación de Dinámica Cardiovascular, Medellín, Colombia.

Jesús Antonio Carlos Cornelio, Universidad Michoacana de San Nicolás de Hidalgo
Candidato a Doctor en Ciencias, Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.
Lina Marcela Hoyos Palacio, Universidad Pontificia Bolivariana

Doctora en Ingeniería, Universidad Pontificia Bolivariana, Facultad de Ingenierías, Escuela de Ciencias de la Salud, Grupo de Investigación de Dinámica Cardiovascular, Medellín, Colombia.

John Bustamante Osorno, Universidad Pontificia Bolivariana

MD, Ph.D, Universidad Pontificia Bolivariana, Facultad de Ingenierías, Escuela de Ciencias de la Salud, Grupo de Investigación de Dinámica Cardiovascular, Medellín, Colombia.

Citas

Mendis, S., Thygesen, K., Kuulasmaa, K., Giampaoli, S., Mähönen, M., Blackett, K. N., & Lisheng, L. World Health Organization definition of myocardial infarction: 2008–09 revision. International journal of epidemiology, 40(1), 139-146, 2011.

Mendoza Beltrán, F. C., Isaza Restrepo, D., Beltrán Pineda, R., Jaramillo Villegas, C., Beltrán Bohórquez, J. R., & Herrera Bertel, M. A. Guías Colombianas de Cardiología. “Síndrome coronario agudo sin elevación del ST (Angina inestable e infarto agudo de miocardio sin elevación del ST)”. Rev Colomb Cardiol, 15(3), 141-232, 2008.

Balaguer-Malfagón, J. R., Pomar-Domingo, F., Vilar-Herrero, J. V., Planas-del Viejo, A. M., & Pérez-Fernández, E. “Trombosis del stent en la era moderna: incidencia, consecuencias y factores predictores”. Revista española de cardiología, 59(8), 842-845, 2006.

Carmena, R., Duriez, P., & Fruchart, J. C. “Atherogenic lipoprotein particles in atherosclerosis”. Circulation, 109(23 suppl 1), III-2, 2004.

Nakajima, K., Nakano, T., & Tanaka, A. “The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma”. Clinica Chimica Acta, 367(1), 36-47, 2006.

Stocker, R., & Keaney, J. F. “Role of oxidative modifications in atherosclerosis”. Physiological reviews, 84(4), 1381-1478, 2004.

Kiemeneij, F., Serruys, P. W., Macaya, C., Rutsch, W., Heyndrickx, G., Albertsson, P., & Sigwart, U. “Continued benefit of coronary stenting versus balloon angioplasty: five-year clinical follow-up of Benestent-I trial”. Journal of the American College of Cardiology, 37(6), 1598-1603, 2001.

Echeverri, D. “Efectos biológicos de los stents medicados en la circulación coronaria”. Revista Colombiana de Cardiología, 17(2), 47-55, 2010.

Morice, M. C., Colombo, A., Meier, B., Serruys, P., Tamburino, C., Guagliumi, G., & Stoll, H. P. Quality Trial Investigators: “Sirolimus-vs. paclitaxel-eluting stents in de novo coronary artery lesions: The REALITY trial—A randomized controlled trial”. JAMA, 295, 895-904, 2006.

Stettler, C., Wandel, S., Allemann, S., Kastrati, A., Morice, M. C., Schömig, A., & Goy, J. J. “Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis”. The Lancet, 370(9591), 937-948, 2007.

Nebeker, J. R., Virmani, R., Bennett, C. L., Hoffman, J. M., Samore, M. H., Alvarez, J., & Yarnold, P. R. “Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project”. Journal of the American College of Cardiology, 47(1), 175-181, 2006.

Albini, A., Mussi, V., Parodi, A., Ventura, A., Principi, E., Tegami, S., & Finzi, G. “Interactions of single-wall carbon nanotubes with endothelial cells”. Nanomedicine: Nanotechnology, Biology and Medicine, 6(2), 277-288, 2010.

Psarros, C., Lee, R., Margaritis, M., & Antoniades, C. “Nanomedicine for the prevention, treatment and imaging of atherosclerosis”. Maturitas, 73(1), 52-60, 2012.

Ruenraroengsak, P., Cook, J. M., & Florence, A. T. “Nanosystem drug targeting: facing up to complex realities”. Journal of Controlled Release, 141(3), 265-276, 2010.

Gangupomu, V. K., & Capaldi, F. M. “Interactions of carbon nanotube with lipid bilayer membranes”. Journal of Nanomaterials, 2011.

Gharib et al, Patent No. US 2012/0058170A1. United States. Mar 8, 2012.

Lewis, D. R., Kamisoglu, K., York, A. W., & Moghe, P. V. “Polymer‐based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis”. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 3(4), 400-420, 2011.

Rouhanizadeh, M., Tang, T., Li, C., Hwang, J., Zhou, C., & Hsiai, T. K. “Differentiation of oxidized low density lipoproteins by nanosensors”. Sensors and Actuators B: Chemical, 114(2), 788-798, 2006.

Iijima, S. “Helical microtubules of graphitic carbon”. Nature, 354(6348), 56-58, 1991.

Diaz Lantada, A. “Metodología para el desarrollo de dispositivos médicos basados en el empleo de polímeros activos como sensores y actuadores” (Doctoral dissertation, Industriales), 2009.

Meng, L., Fu, C., & Lu, Q. “Advanced technology for functionalization of carbon nanotubes”. Progress in Natural Science, 19(7), 801-810, 2009.

Tian, H., Tang, Z., Zhuang, X., Chen, X., & Jing, X. “Biodegradable synthetic polymers: preparation, functionalization and biomedical application”. Progress in Polymer Science, 37(2), 237-280, 2012.

Chnari, E., Lari, H. B., Tian, L., Uhrich, K. E., & Moghe, P. V. “Nanoscale anionic macromolecules for selective retention of low-density lipoproteins”. Biomaterials, 26(17), 3749-3758, 2005.

Terrones, M., Grobert, N., Olivares, J., Zhang, J. P., Terrones, H., Kordatos, K., & Cheetham, A. K. “Controlled production of aligned-nanotube bundles”. Nature, 388(6637), 52-55, 1997.

Wang, X., Liu, Y., Zhu, D., Zhang, L., Ma, H., Yao, N., & Zhang, B. “Controllable growth, structure, and low field emission of well-aligned CN x nanotubes”. The Journal of Physical Chemistry B, 106(9), 2186-2190, 2002.

. Nath, M., Satishkumar, B. C., Govindaraj, A., Vinod, C. P., & Rao, C. N. R. “Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts”. Chemical Physics Letters, 322(5), 333-340, 2000.

Glerup, M., Castignolles, M., Holzinger, M., Hug, G., Loiseau, A., & Bernier, P. “Synthesis of highly nitrogen-doped multi-walled carbon nanotubes”. Chemical Communications, (20), 2542-2543, 2003.

Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W. K., Terrones, H., & Rühle, M. “Carbon nitride Nanocomposites: formation of aligned CxNy nanofibers”. Advanced materials, 11(8), 655-658, 1999.

Terrones, M., Terrones, H., Grobert, N., Hsu, W. K., Zhu, Y. Q., Hare, J. P, &Zhang, J. P. “Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures”. Applied Physics Letters, 75(25), 3932-3934, 1999.

Lim, S. H., Elim, H. I., Gao, X. Y., Wee, A. T. S., Ji, W., Lee, J. Y., & Lin, J. “Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes”. Physical Review B, 73(4), 045402, 2006.

. Droppa Jr, R., Ribeiro, C. T. M., Zanatta, A. R., Dos Santos, M. C., & Alvarez, F. “Comprehensive spectroscopic study of nitrogenated carbon nanotubes”. Physical Review B, 69(4), 045405, 2004.

Czerw, R., Terrones, M., Charlier, J. C., Blase, X., Foley, B., Kamalakaran, R., & Blau, W. “Identification of electron donor states in N-doped carbon nanotubes”. Nano Letters, 1(9), 457-460, 2001.

Burch, H. J., Davies, J. A., Brown, E., Hao, L., Contera, S. A., Grobert, N., & Ryan, J. F. “Electrical conductance and breakdown in individual CNx multiwalled nanotubes”. Applied physics letters, 89(14), 143110, 2006.

Liu, A. Y., & Wentzcovitch, R. M. “Stability of carbon nitride solids”. Physical Review B, 50(14), 10362, 1994.

Reyes-Reyes, M., Grobert, N., Kamalakaran, R., Seeger, T., Golberg, D., Rühle, M., & Terrones, M. “Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis”. Chemical physics letters, 396(1), 167-173, 2004.

García, A., “Obtención y caracterización teórica y experimental de nanotubos de carbono dopados con diferentes elementos”. Tesis (Doctorado en Materiales). Centro de Investigación y de estudios avanzados del Instituto Politécnico Nacional: Santiago de Querétaro, México, 230 pp. 2010.

Robertson, J., & Davis, C. A. “Nitrogen doping of tetrahedral amorphous carbon”. Diamond and Related Materials, 4(4), 441-444, 1995.

Ewels, C. P., & Glerup, M. “Nitrogen doping in carbon nanotubes”. Journal of Nanoscience and nanotechnology, 5(9), 1345-1363, 2005.

Yang, J. H., Kim, B. J., Kim, Y. H., Lee, Y. J., Ha, B. H., Shin, Y. S, & Yoo, J. B. “Nitrogen-incorporated multiwalled carbon nanotubes grown by direct current plasma-enhanced chemical vapor deposition”. Journal of Vacuum Science & Technology B, 23(3), 930-933, 2005.

Sharifi, T., Nitze, F., Barzegar, H. R., Tai, C. W., Mazurkiewicz, M., Malolepszy, A., & Wågberg, T. “Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion”. Carbon, 50(10), 3535-3541, 2012.

Suenaga, K., Yudasaka, M., Colliex, C., & Iijima, S. “Radially modulated nitrogen distribution in CN x Nano tubular structures prepared by CVD using Ni phthalocyanine”. Chemical Physics Letters, 316(5), 365-372, 2000.

Kotakoski, J., Krasheninnikov, A. V., Ma, Y., Foster, A. S., Nordlund, K., & Nieminen, R. M. “B and N ion implantation into carbon nanotubes: insight from atomistic simulations”. Physical Review B, 71(20), 205408, 2005.

Choi, H. C., Bae, S. Y., Park, J., Seo, K., Kim, C., Kim, B., & Shin, H. J. “Experimental and theoretical studies on the structure of N-doped carbon nanotubes: possibility of intercalated molecular N2”. Applied Physics Letters, 85(23), 5742-5744, 2004.

Srivastava, D., Menon, M., Daraio, C., Jin, S., Sadanadan, B., & Rao, A. M. “Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes”. Physical Review B, 69(15), 153414, 2004.

Zhu, L., Jin, Q., Xu, J., Ji, J., & Shen, J. “Poly (2‐ (methacryloyloxy) ethyl phosphorylcholine)‐functionalized multi‐walled carbon nanotubes: Preparation, characterization, solubility, and effects on blood coagulation”. Journal of applied polymer science, 113(1), 351-357, 2009.

Cole, L. K., Vance, J. E., & Vance, D. E. “Phosphatidylcholine biosynthesis and lipoprotein metabolism”. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(5), 754-761, 2012.

Zhan, S., Tian, Y., Cui, Y., Wu, H., Wang, Y., Ye, S., & Chen, Y. “Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane”. China Particuology, 5(3), 213-219, 2007.

Cornelio, J. A. C., Cuervo, P. A., Hoyos-Palacio, L. M., Lara-Romero, J., Toro, A. “Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel–rail system”. Journal of Materials Research and Technology. 5(1), 68-76, 2016.

Musso, S., Porro, S., Vinante, M., Vanzetti, L., Ploeger, R., Giorcelli, M, & Tagliaferro, A. “Modification of MWNTs obtained by thermal-CVD”. Diamond and related materials, 16(4), 1183-1187, 2007.

Hoyos L.M. “Efectos de los catalizadores Fe, Co, Ni, Mo y sus mezclas soportadas sobre sílice sol-gel, para la síntesis de nanotubos de carbono mediante CVD”. Tesis de Doctorado Universidad Pontificia Bolivariana. Medellín, 2010.

Mionic’, M., Alexander, D. T., Forró, L., & Magrez, A. “Influence of the catalyst drying process and catalyst support particle size on the carbon nanotubes produced by CCVD”. Physica status solidi (b), 245(10), 1915-1918, 2008.

Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G. “Direct growth of aligned open carbon nanotubes by chemical vapor deposition”. Chemical Physics Letters, 299(1), 97-102, 1999.

Li, Q., Yan, H., Zhang, J., & Liu, Z. “Pulsed CVD growth of single-walled carbon nanotubes”. Carbon, 41(14), 2876-2878, 2003.

Marshall, M. W., Popa-Nita, S., & Shapter, J. G. “Measurement of functionalized carbon nanotube carboxylic acid groups using a simple chemical process”. Carbon, 44(7), 1137-1141, 2006.

Maldonado, S., Morin, S., & Stevenson, K. J. “Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping”. Carbon, 44(8), 1429-1437, 2006.

Malard, L., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5): p. 51-87.

Donato, M., et al., Optimisation of gas mixture composition for the preparation of high quality MWCNT by catalytically assisted CVD. Diamond and related materials, 2007. 16(4): p. 1095-1100.

Donato, M., et al., Experiments on C nanotubes synthesis by Fe-assisted ethane decomposition. Diamond and related materials, 2008. 17(3): p. 318-324.

Liu, Y., Zhang, Y., Zhang, T., Jiang, Y., & Liu, X. “Synthesis, characterization and cytotoxicity of phosphorylcholine oligomer grafted graphene oxide”. Carbon, 71, 166-175, 2014.

Publicado
2016-06-02
Cómo citar
Berrio Sierra J. E., Carlos Cornelio J. A., Hoyos Palacio L. M., & Bustamante Osorno J. (2016). Interacción de lipoproteínas de baja densidad con nanotubos de carbono dopados y funcionalizados. Revista Colombiana De Materiales, (8), 61-78. Recuperado a partir de https://revistas.udea.edu.co/index.php/materiales/article/view/26892
Sección
Artículos