Funcionalización de prótesis poliméricas por proyección térmica: una revisión

Autores/as

  • Benjamín Ortega Centro de Tecnología Avanzada A. C. (CIATEQ)
  • Hannia González Universidad Tecnológica de Corregidora

DOI:

https://doi.org/10.17533/udea.rcm.n16a05

Palabras clave:

bioactividad, prótesis poliméricas, implantes, proyección térmica

Resumen

Se presenta una revisión de la literatura acerca de la funcionalización de materiales poliméricos para su uso en aplicaciones ortopédicas por proyección térmica. Los recubrimientos bioactivos sobre materiales con base polimérica son una alternativa desarrollada con el propósito de mejorar las propiedades superficiales de estos materiales. La modificación superficial mediante la incorporación de un material bioactivo es una opción atractiva para mejorar el desempeño de materiales al ser implantados en el organismo. Primero se describen de manera breve los conceptos referentes a la proyección térmica. Después, se exploran los principales polímeros empleados en el ámbito de prótesis y los biomateriales empleados en la fabricación de los recubrimientos bioactivos. Además, se describen los principales parámetros que afectan las propiedades del polímero. Esta revisión tiene como objetivo resumir las contribuciones más recientes e importantes en el tema de funcionalización de prótesis poliméricas modificadas superficialmente por proyección térmica.

|Resumen
= 925 veces | PDF
= 778 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Hannia González, Universidad Tecnológica de Corregidora

Universidad Tecnológica de Corregidora, Facultad de Biotecnología, Querétaro, México.

Citas

X. FAN, J. CHEN, J. peng ZOU, Q. WAN, Z. cheng ZHOU, and J. ming RUAN, “Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 19, no. 2, pp. 347–352, Apr. 2009, doi: 10.1016/S1003-6326(08)60276-9.

G. A. Clavijo-Mejía, J. A. Hermann-Muñoz, J. A. Rincón-López, H. Ageorges, and J. Muñoz-Saldaña, “Bovine-derived hydroxyapatite coatings deposited by high-velocity oxygen-fuel and atmospheric plasma spray processes: A comparative study,” Surf. Coatings Technol., vol. 381, p. 125193, 2020, doi: 10.1016/j.surfcoat.2019.125193.

M. Gardon, A. Latorre, M. Torrell, S. Dosta, J. Fernández, and J. M. Guilemany, “Cold gas spray titanium coatings onto a biocompatible polymer,” Mater. Lett.,vol. 106, pp. 97–99, 2013, doi: 10.1016/j.matlet.2013.04.115.

A. S. Kang, G. Singh, and V. Chawla, “In-vitro performance of reinforced hydroxyapatite coatings deposited using vacuum plasma spray technique on Ti-6Al-4V,” Mater. Today Proc.,vol. 26, no. xxxx, pp. 671–676, 2019, doi: 10.1016/j.matpr.2019.12.363.

S. M. Forghani, M. J. Ghazali, A. Muchtar, A. R. Daud, N. H. N. Yusoff, and C. H. Azhari, “Effects of plasma spray parameters on TiO2-coated mild steel using design of experiment (DoE) approach,” Ceram. Int.,vol. 39, no. 3, pp. 3121–3127, Apr. 2013, doi: 10.1016/j.ceramint.2012.09.092.

P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals. 2014.

L. Pawlowski, The Science and Engineering of Thermal Spray Coatings: Second Edition. 2008.

P. Fauchais and G. Montavon, “Thermal and cold spray: Recent developments,” Key Eng. Mater., vol. 384, pp. 1–59, 2008, doi: 10.4028/www.scientific.net/kem.384.1.

D. R. Tobergte and S. Curtis, Handbook of thermal spray technology, vol. 53, no. 9. 2013.[10]D. Hegemann, Plasma Polymer Deposition and Coatings on Polymers, vol. 4, no. May 2014. 2014.

B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, An Introduction to Materials in Medicine. 2004.

B. G. X. Zhang, D. E. Myers, G. G. Wallace, M. Brandt, and P. F. M. Choong, “Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings” Int. J. Mol. Sci., vol. 15, no.7, pp. 11878–11921, 2014, doi: 10.3390/ijms150711878.

A. R. Cutler, S. Siddiqui, A. L. Mohan, V. H. Hillard, F. Cerabona, and K. Das, “Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion,” J. Neurosurg. Spine, vol. 5, no. 6, pp. 534–539, 2006, doi: 10.3171/spi.2006.5.6.534.

O. Noiset, Y. J. Schneider, and J. Marchand-Brynaert, “Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces,” J. Biomater.Sci. Polym. Ed., vol. 10, no. 6, pp. 657–677, 1999, doi: 10.1163/156856299X00865.

L. Sedel, R. Nizard, and A. Meunier, Orthopedic biomaterials, vol. 179, no. 3. 1995.

J. Y. Wong and J. D. Bronzino, Biomaterials. Boca Raton, FL: Taylor and Francis Group, 2007.

L. Czuba, Application of Plastics in Medical Devices and Equipment. Elsevier Inc., 2014.

A. Moridi, S. M. Hassani-Gangaraj, M. Guagliano, and M. Dao, “Cold spray coating: Review of material systems and future perspectives,” Surf. Eng., vol. 30, no. 6, pp. 369–395, 2014, doi: 10.1179/1743294414Y.0000000270.

MIT, “Material Properties Database MIT,” PMMA. http://www.mit.edu/~6.777/matprops/pmma.htm.

J. Y. Rho, R. B. Ashman, and C. H. Turner, “Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements,” J. Biomech., vol. 26, no. 2, pp. 111–119, 1993, doi: 10.1016/0021-9290(93)90042-D.

M. Arora, E. K. S. Chan, S. Gupta, and A. D. Diwan,“Polymethylmethacrylate bone cements and additives: A review of the literature,” World J. Orthop.,vol. 4, no. 2, pp. 67–74, 2013, doi: 10.5312/wjo.v4.i2.67.

H. Wang et al., “Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone,” Biomaterials,vol. 31, no. 32, pp. 8181–8187, 2010, doi: 10.1016/j.biomaterials.2010.07.054.

R. Ma and T. Tang, “Current strategies to improve the bioactivity of PEEK,” Int. J. Mol. Sci., vol. 15, no. 4, pp. 5426–5445, 2014, doi: 10.3390/ijms15045426.

L. W. McKeen, Plastics Used in Medical Devices. Elsevier Inc., 2014.

J. Massera, S. Fagerlund, L. Hupa, and M. Hupa, “Crystallization mechanism of the bioactive glasses, 45S5 and S53P4,” J. Am. Ceram. Soc.,vol.95, no. 2, pp. 607–613, 2012, doi: 10.1111/j.1551-2916.2011.05012.x.

G. M. Wu, W. D. Hsiao, and S. F. Kung, “Investigation of hydroxyapatite coated polyether ether ketone composites by gas plasma sprays,” Surf. Coatings Technol.,vol. 203, no. 17–18, pp. 2755–2758, Jun. 2009, doi: 10.1016/j.surfcoat.2009.02.115.

J. H. Lee et al., “In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology,” Acta Biomater.,vol. 9, no. 4, pp. 6177–6187, 2013, doi: 10.1016/j.actbio.2012.11.030.

L. Barillas et al., “Bioactive Plasma Sprayed Coatings on Polymer Substrates Suitable for Orthopedic Applications: A Study With PEEK,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 2,no. 5, pp. 520–525, May 2018, doi: 10.1109/trpms.2018.2832450.

N. T. Evans et al., “High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants,” Acta Biomater., vol. 13, pp. 159–167, 2015, doi: 10.1016/j.actbio.2014.11.030.

F. Visentin et al., “TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants,” Surf. Coatings Technol., vol. 378, p. 125049, 2019, doi: 10.1016/j.surfcoat.2019.125049.

C. Zhou et al., “Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering,” J. Mech. Behav. Biomed. Mater., vol. 48, pp. 1–11, 2015, doi: 10.1016/j.jmbbm.2015.04.002.

E. Tamjid, R. Bagheri, M. Vossoughi, and A. Simchi, “Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites,” Mater. Sci. Eng. C, vol. 31, no. 7, pp. 1526–1533, 2011, doi: 10.1016/j.msec.2011.06.013.

M. B. Casu et al., “A multi-technique investigation of TiO2 films prepared by magnetron sputtering,” Surf. Sci., vol. 602, no. 8, pp. 1599–1606, 2008, doi: 10.1016/j.susc.2008.02.030.

T. Jiya, T. Smit, J. Deddens, and M. Mullender, “Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-l-lactide-co-d,l-lactide fusion devices: A prospective, randomized study to assess fusion and clinical outcome,” Spine (Phila. Pa. 1976).,vol. 34, no. 3,pp. 233–237, 2009, doi: 10.1097/BRS.0b013e318194ed00.

H. W. Park, J. K. Lee, S. J. Moon, S. K. Seo, J. H. Lee, and S. H. Kim, “The efficacy of the synthetic interbody cage and grafton for anterior cervical fusion,” Spine (Phila. Pa. 1976)., vol. 34,no. 17, pp.591–595, 2009, doi: 10.1097/BRS.0b013e3181ab8b9a.

J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H. B. Seim, and A. S. Turner, “Polyetheretherketone as a biomaterial for spinal applications,” Biomaterials, vol. 27, no. 3, pp. 324–334, 2006, doi: 10.1016/j.biomaterials.2005.07.011.

D. Briem et al., “Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces,” J. Mater. Sci. Mater. Med.,vol. 16, no. 7, pp. 671–677, 2005, doi: 10.1007/s10856-005-2539-z.

E. M. Liston, “Plasma treatment for improved bonding: A review,” J. Adhes., vol. 30, no. 1–4, pp. 199–218, 1989, doi: 10.1080/00218468908048206.

S. W. Ha, R. Hauert, K. H. Ernst, and E. Wintermantel, “Surface analysisof chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications,” Surf. Coatings Technol.,vol. 96, no. 2–3, pp. 293–299, 1997, doi: 10.1016/S0257-8972(97)00179-5.

F. Awaja, S. Zhang, N. James, and D. R. McKenzie, “Enhanced Autohesive Bonding of Polyetheretherketone (PEEK) for biomedical applications using a methane/oxygen plasma treatment,” Plasma Process. Polym., vol. 7, no. 12, pp. 1010–1021, 2010, doi: 10.1002/ppap.201000072.

F. Awaja, D. V. Bax, S. Zhang, N.James, and D. R. McKenzie, “Cell adhesion to PEEK treated by plasma immersion ion implantation and deposition for active medical implants,” Plasma Process. Polym.,vol. 9, no. 4, pp. 355–362, 2012, doi: 10.1002/ppap.201100034.

J. Waser-Althaus et al., “Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone,” J. Mater. Sci. Mater. Med., vol. 25, no. 2, pp. 515–525,2014, doi: 10.1007/s10856-013-5072-5.

S. Barkarmo et al., “Nano-hydroxyapatite-coated PEEK implants:A pilot study in rabbit bone,” J. Biomed. Mater.Res. -Part A, vol. 101 A, no. 2, pp. 465–471, 2013, doi: 10.1002/jbm.a.34358.

B. D. Hahn et al., “Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery,” Appl. Surf. Sci., vol. 283, pp. 6–11, 2013, doi: 10.1016/j.apsusc.2013.05.073.

A. Rabiei and S. Sandukas, “Processing and evaluation of bioactive coatings on polymeric implants,” J. Biomed. Mater. Res. -Part A, vol. 101 A, no. 9, pp. 2621–2629, 2013, doi: 10.1002/jbm.a.34557.

A. Sturgeon, B. Dunn, S. Celotto, and B. O’Neill, “Cold sprayed coatings for polymer composite substrates,” Eur. Sp. Agency, (Special Publ. ESA SP, vol. 2006, no. 616, pp. 19–23, 2006.

D. Giraud, F. Borit, V. Guipont, M. Jeandin, and J. M. Malhaire, “Metallization of a polymer using cold spray: Application to aluminum coating of polyamide 66,” Proc. Int. Therm. Spray Conf., no. February, pp. 265–270, 2012.

P. Taylor, M. J. Vucko, P. C. King, A. J. Poole, M. Z. Jahedi, and R. De Nys, “Biofouling : The Journal of Bioadhesion and Biofilm Polyurethane seismic streamer skins : an application of cold spray metal embedment,” no. January 2013, pp. 37–41, 2013.

G. Sun, X. He, J. Jiang, Y. Sun, and Y. Zhong, “A study on the deposition of Al2O3coatings on polymer substrates by a plasma spray/micro-arc oxidation two-step method,” J. Therm. Spray Technol., vol. 22, no. 1, pp. 27–35, 2013, doi: 10.1007/s11666-012-9865-8.

C. Auclair-Daigle, M. N. Bureau, J. G. Legoux, and L. Yahia, “Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants,” J. Biomed. Mater. Res. -Part A, vol. 73, no. 4, pp. 398–408, 2005, doi: 10.1002/jbm.a.30284.

S. Tamulevičius, “Stress and strain in the vacuum deposited thin films,” Vacuum, vol. 51, no. 2, pp. 127–139, 1998, doi: 10.1016/S0042-207X(98)00145-6.

P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, “Knowledge concerning splat formation: An invited review,” J. Therm. Spray Technol., vol. 13, no. 3, pp. 337–360, 2004, doi: 10.1361/10599630419670.

R. Gonzalez, H. Ashrafizadeh, A. Lopera, P. Mertiny, and A. McDonald, “A Review of Thermal Spray Metallization of Polymer-Based Structures,” J. Therm. Spray Technol., vol. 25, no. 5, pp. 897–919, 2016, doi: 10.1007/s11666-016-0415-7.

M. S. Abu Bakar et al., “Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants,” Biomaterials, vol. 24, no. 13, pp. 2245–2250, 2003, doi: 10.1016/S0142-9612(03)00028-0.

K. L. Wong et al., “Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites,” Biomaterials, vol. 30, no. 23–24, pp. 3810–3817, 2009, doi: 10.1016/j.biomaterials.2009.04.016

Descargas

Publicado

2021-01-29

Cómo citar

Ortega, B., & González, H. (2021). Funcionalización de prótesis poliméricas por proyección térmica: una revisión. Revista Colombiana De Materiales, (16), 90–103. https://doi.org/10.17533/udea.rcm.n16a05

Número

Sección

Artículos