REDUCCIÓN DE CO2 EN LA INDUSTRIA CEMENTERA POR MEDIO DE PROCESOS DE SÍNTESIS QUÍMICA
DOI:
https://doi.org/10.17533/udea.rcm.19340Palabras clave:
Cemento Pórtland, Métodos químicos de síntesis, Reducción de CO2, Impacto ambiental, Nuevos materiales cementantesResumen
Descargas
Citas
Damineli, B., Kemeid, L., Aguiar F.P. y Vanderley John. Measuring the eco-efficiency of cement use. Cement and Concrete Research, 2010.
Gartner, E. Industrial Interesting Approaches to low CO2 Cements. Cement and Concrete Research. Vol. 34, pag. 1489–1498. 2004.
Van den Heede, P. y De Belie, N. “Environmental impact and life cycle assessment of traditional and ‘green’ concretes: Literature review and theoretical calculations”. Cement & Concrete Composites. Vol. 34, pag. 431–442. 2012.
Damtoft, J., Lukasik, J., Herfort, D., Sorrentino, D. y Gartner E. “Sustainable development and climate change initiatives”. Cement and Concrete Research. Vol. 38, pag. 115–127. 2008.
Roskovic, R. y Bjegovic, D. “Role of mineral additions in reducing CO2 emission”. Cement and Concrete Research. Vol. 35, pag. 974–978. 2005.
Sorrentino, F. “Chemistry and engineering of the production process: State of the art”. Cement and Concrete Research. Vol. 41, pag. 616–623. 2011.
Habert, G., Billard, Rossi, Chen y Roussel. “Cement production technology improvement compared to factor 4 objectives”. Cement and Concrete Research. 40, pag. 820–826. 2010.
Mossino, P. “ReviewSome aspects in self-propagating high-temperature synthesis”. Ceramics International. Vol. 30, pag. 311–332. 2004.
Li, H., Agrawal, Cheng, J. y Silsbee. “Formation and hidration of C3S prepard by microwave and conventional sintering”. Cement and Concrete Research. Vol. 29, pag. 1611–1617. 1999.
Chrysafi, R., Perrak, Th. y Kakali G. “Sol–gel preparation of 2CaO·SiO2”. Journal of the European Ceramic Society. Vol. 27, pag. 1707-1710. 2007.
Wesselsky, A. y Jensen, O.M. “Synthesis of pure Portland cement phases”. Cement and Concrete Research. Vol. 39, pag. 973–980. 2009.
Trubaev, P.A. y Besedin, P.V. “Criteria for the Thermodynamic Efficiency of Cement Clinker Production from Natural Raw Material”. Theoretical Foundations of Chemical Engineering. Vol. 39, No. 6, pag. 628–634. 2005.
Gaki A., Chrysafi y Kakali “Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique”. Journal of the Eur. Cer. Soc. Vol. 27, pag.1781–1784. 2007.
Taylor H.F.W. “Cement Chemistry”. 2nd ed. Thomas Telford. 1997.
Raab, B. y Pöllmann, H. “Synthesis of pure cement phases by different synthesis methods”. International Conference on Calcium Aluminate Cements. France. 2008.
Roy, D.M. y Oyefesobi, S.O. “Preparation of very reactive Ca2SiO4 powder”. Journal American Ceramic Society. Vol. 60, pag.178–180. 1977.
Stephan, D. y Wilhelm, P. “Synthesis of pure cementitious phases by sol–gel process as precursor”. Z. Anorg. Allg. Chem. Vol. 630, pag. 1477– 1483. 2004.
Page, C.H., Thombare, C.H., Kamat, R.D. y Chatterjee, A.K. “Development of sol–gel technology for cement manufacture”. Ceram. Trans. Vol. 16, pag. 643–660. 1991.
Voicu, G., Ghit ulica , C.D. y Andronescu, E. “Modified Pechini synthesis of tricalcium aluminate poder”. Materials Characterization. Vol. 73, pag. 89–95. 2012.
Mukasyan, A.S., Epstein, P. y Dinka, P. “Solution combustion synthesis of nanomaterials”. Proceedings of the Combustion Institute. Vol. 31, pag. 1789–1795. 2007.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 Revista Colombiana de Materiales

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.