REDUCCIÓN DE CO2 EN LA INDUSTRIA CEMENTERA POR MEDIO DE PROCESOS DE SÍNTESIS QUÍMICA

Authors

  • Juan Camilo Restrepo National University of Colombia
  • Oscar Jaime Restrepo National University of Colombia
  • Jorge Iván Tóbon National University of Colombia

DOI:

https://doi.org/10.17533/udea.rcm.19340

Keywords:

Portland cement, Chemical syntesis methods, Co2, Reduction, Evironmental impact, New cementitious materials

Abstract

This article shows an initial review of the research developed around manufacturing pure calcium silicate phases of Portland cement, Alite and Belite, through alternative methods of synthesis. Portland cement is the most successful material in the last few years and so far not clearly identify a material that can replace it. In 2012 world production was 3.859 Mt/year, equivalent to a per capita consumption of 548 kg/year and is expected that by 2050 its production was multiplied by a factor of 2.5, to figures close to 9.650 Mt/year [1], which amount to a per capita consumption of 1005 kg / year, additionally, its conventional production generates high energy consumption and significant CO2 emissions in its conventional synthesis process and which, depending on the type of plant, figures correspond to between 0.62 and 0.97 tCO2/tcement produced [2]. This CO2 is generated by the production and processing of raw materials, decarbonization of limestone in the synthesis, fuel burn and finish grinding of clinker to finally turn it into cement. This research is based on environmental, economic, scientific and technological motivations, which seek to contribute to the generation of knowledge and possible local implementation of unconventional methods of manufacturing a cementitious material comparable to Portland cement, with the aim of creating conditions conducive to industrial upgrading.
 
 
 
|Abstract
= 803 veces | PDF (ESPAÑOL (ESPAÑA))
= 863 veces|

Downloads

Download data is not yet available.

Author Biographies

Juan Camilo Restrepo, National University of Colombia

Builder Architect. M.Sc. Ph.D (c). National university of Colombia. Architecture facuilty.

Oscar Jaime Restrepo, National University of Colombia

Ing. Mines and Metallurgy. M.Sc. Ph.D. National university of Colombia. Faculty of Mines.

Jorge Iván Tóbon, National University of Colombia

Geologist engineer. M.Sc. Ph.D. National university of Colombia. Faculty of Mines.

References

Damineli, B., Kemeid, L., Aguiar F.P. y Vanderley John. Measuring the eco-efficiency of cement use. Cement and Concrete Research, 2010. DOI: https://doi.org/10.1016/j.cemconcomp.2010.07.009

Gartner, E. Industrial Interesting Approaches to low CO2 Cements. Cement and Concrete Research. Vol. 34, pag. 1489–1498. 2004. DOI: https://doi.org/10.1016/j.cemconres.2004.01.021

Van den Heede, P. y De Belie, N. “Environmental impact and life cycle assessment of traditional and ‘green’ concretes: Literature review and theoretical calculations”. Cement & Concrete Composites. Vol. 34, pag. 431–442. 2012. DOI: https://doi.org/10.1016/j.cemconcomp.2012.01.004

Damtoft, J., Lukasik, J., Herfort, D., Sorrentino, D. y Gartner E. “Sustainable development and climate change initiatives”. Cement and Concrete Research. Vol. 38, pag. 115–127. 2008. DOI: https://doi.org/10.1016/j.cemconres.2007.09.008

Roskovic, R. y Bjegovic, D. “Role of mineral additions in reducing CO2 emission”. Cement and Concrete Research. Vol. 35, pag. 974–978. 2005. DOI: https://doi.org/10.1016/j.cemconres.2004.04.028

Sorrentino, F. “Chemistry and engineering of the production process: State of the art”. Cement and Concrete Research. Vol. 41, pag. 616–623. 2011. DOI: https://doi.org/10.1016/j.cemconres.2011.03.013

Habert, G., Billard, Rossi, Chen y Roussel. “Cement production technology improvement compared to factor 4 objectives”. Cement and Concrete Research. 40, pag. 820–826. 2010. DOI: https://doi.org/10.1016/j.cemconres.2009.09.031

Mossino, P. “ReviewSome aspects in self-propagating high-temperature synthesis”. Ceramics International. Vol. 30, pag. 311–332. 2004. DOI: https://doi.org/10.1016/S0272-8842(03)00119-6

Li, H., Agrawal, Cheng, J. y Silsbee. “Formation and hidration of C3S prepard by microwave and conventional sintering”. Cement and Concrete Research. Vol. 29, pag. 1611–1617. 1999. DOI: https://doi.org/10.1016/S0008-8846(99)00145-3

Chrysafi, R., Perrak, Th. y Kakali G. “Sol–gel preparation of 2CaO·SiO2”. Journal of the European Ceramic Society. Vol. 27, pag. 1707-1710. 2007. DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.05.004

Wesselsky, A. y Jensen, O.M. “Synthesis of pure Portland cement phases”. Cement and Concrete Research. Vol. 39, pag. 973–980. 2009. DOI: https://doi.org/10.1016/j.cemconres.2009.07.013

Trubaev, P.A. y Besedin, P.V. “Criteria for the Thermodynamic Efficiency of Cement Clinker Production from Natural Raw Material”. Theoretical Foundations of Chemical Engineering. Vol. 39, No. 6, pag. 628–634. 2005. DOI: https://doi.org/10.1007/s11236-005-0127-z

Gaki A., Chrysafi y Kakali “Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique”. Journal of the Eur. Cer. Soc. Vol. 27, pag.1781–1784. 2007. DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.05.002

Taylor H.F.W. “Cement Chemistry”. 2nd ed. Thomas Telford. 1997. DOI: https://doi.org/10.1680/cc.25929

Raab, B. y Pöllmann, H. “Synthesis of pure cement phases by different synthesis methods”. International Conference on Calcium Aluminate Cements. France. 2008.

Roy, D.M. y Oyefesobi, S.O. “Preparation of very reactive Ca2SiO4 powder”. Journal American Ceramic Society. Vol. 60, pag.178–180. 1977. DOI: https://doi.org/10.1111/j.1151-2916.1977.tb15506.x

Stephan, D. y Wilhelm, P. “Synthesis of pure cementitious phases by sol–gel process as precursor”. Z. Anorg. Allg. Chem. Vol. 630, pag. 1477– 1483. 2004. DOI: https://doi.org/10.1002/zaac.200400090

Page, C.H., Thombare, C.H., Kamat, R.D. y Chatterjee, A.K. “Development of sol–gel technology for cement manufacture”. Ceram. Trans. Vol. 16, pag. 643–660. 1991.

Voicu, G., Ghit ulica , C.D. y Andronescu, E. “Modified Pechini synthesis of tricalcium aluminate poder”. Materials Characterization. Vol. 73, pag. 89–95. 2012. DOI: https://doi.org/10.1016/j.matchar.2012.08.002

Mukasyan, A.S., Epstein, P. y Dinka, P. “Solution combustion synthesis of nanomaterials”. Proceedings of the Combustion Institute. Vol. 31, pag. 1789–1795. 2007. DOI: https://doi.org/10.1016/j.proci.2006.07.052

Published

2014-05-16

How to Cite

Restrepo, J. C., Restrepo, O. J., & Tóbon, J. I. (2014). REDUCCIÓN DE CO2 EN LA INDUSTRIA CEMENTERA POR MEDIO DE PROCESOS DE SÍNTESIS QUÍMICA. Revista Colombiana De Materiales, (5), 54–60. https://doi.org/10.17533/udea.rcm.19340

Issue

Section

Artículos

Most read articles by the same author(s)