Effect of heat treatments with air atmosphere in the performance in vitro and adherence of oxy-fuel thermal sprayed hydroxyapatite coatings

Authors

  • Jhonatan Gómez Pérez University of Antioquia
  • María Esperanza López University of Antioquia
  • Hamilton Copete López University of Antioquia
  • Fabio Vargas Galvis University of Antioquia

DOI:

https://doi.org/10.17533/udea.rcm.327998

Keywords:

coating, oxy-fuel thermal spraying, heat treatment, hydroxyapatite, in vitro test, oxyapatite

Abstract

This paper shows the influence generated by heat treatments in air on properties of hydroxyapatite coatings, deposited by oxy-fuel thermal on substrates metallic Ti6 Al4 V. Were conducted heat treatments in air to 600°C for 1 hour and to 800°C for 1 and 3 hours. Assessed microstructure, crystalline phases present, microhardness of substrates and coatings, adhesion of coatings and stability of coating with best properties in physiological fluids simulated. The coatings show morphologies with typical ways of coatings made by heat projection with flame oxyacetylene. The spectra of x-ray diffraction (XRD) showed the presence of crystalline phases corresponding to hydroxyapatite, as well as the presence of oxiapatita; secondary phase absent after the heat treatments made, increasing the crystallinity of hydroxyapatite. After heat treatment there was aslight decrease of hardness of the substrates. The treatment best balance of properties presented was the realized to 800°C for 3 hours, throwing adhesion values of 13,37 ± 0,21 MPa. The in vitro tests carried out showed the dissolution of phases secondary in coatings from the precipitation of crystals of calcium on the surface of the ceramic coating, precipitates were observed with better detail with images taken with scanning electron microscopy and these were rising as it increased the days of immersion in the simulated physiological fluid.

|Abstract
= 122 veces | PDF (ESPAÑOL (ESPAÑA))
= 145 veces|

Downloads

Download data is not yet available.

Author Biographies

Jhonatan Gómez Pérez, University of Antioquia

Ceramic Materials and Coatings Research Group (GIMACYR), Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Antioquia, Medellín, Colombia.

María Esperanza López, University of Antioquia

Ceramic Materials and Coatings Research Group (GIMACYR), Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Antioquia, Medellín, Colombia.

Hamilton Copete López, University of Antioquia

Ceramic Materials and Coatings Research Group (GIMACYR), Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Antioquia, Medellín, Colombia.

Fabio Vargas Galvis, University of Antioquia

Ceramic Materials and Coatings Research Group (GIMACYR), Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Antioquia, Medellín, Colombia.

References

Férnandez, J., Gilemany, J. M., Gaona, M., “La proyección térmica en la obtención de recubrimientos biocompatibles : ventajas de la proyección térmica por alta velocidad ( hvof ) sobre la proyección térmica por plasma atmosférico ( aps )”, Biomecánica, vol. 13, no. 1, pp. 16–39, 2005.

Copete, H., Vargas, F., Echavarría, A., “Evaluación del comportamiento in vitro de recubrimientos de ha depositados mediante proyección térmica por combustión oxiacetilénica sobre un sustrato de Ti6Al4V”, Dyna, vol. 10, no. 472, pp. 101–107, 2012.

Zhou, X., Guduru,R. K., “Hap-metal based biocomposite coatings and characteristics of plasma-deposited hap-Ti/Ti6Al4Vcoatings,” 2014.

ASM International Handbook Committee, “Properties and selection: nonferrous alloys and special-purpose materials” vol. 2, pp. 1770–1782, 1990.

Copete, H., Implementación de un Procedimiento In-vitro con Fluido Fisiológico para Evaluar elComportamiento Recubrimientos de Hidroxiapatita Depositada mediante Proyección Térmica sobre un SutratoTi-6Al-4V, Universidad de Antioquia, 2011.

Gadow, R., Killinger, A., Stiegler, N., “Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques”, Surf. Coat. Technol., vol. 205, no. 4, pp. 1157–1164, 2010.

Bernal, S., Estudio de la Calidad de Recubrimientos de Hidroxiapatita sobre Acero Inoxidable Implantable Aplicados mediante Proyección Térmica con Plasma, Universidad Nacional de Colombia. Facultad de Ingeniería. Departamento de Ingeniería Mecánica y Mecatrónica, Bogotá, colombia, 2013.

Yang, C., Lui, T., “Effect of crystallization on the bonding strength and failures of plasma-sprayed hydroxyapatite”, Mater. Trans.,vol. 48, no. 2, pp. 211–218, 2007.

Chen, J., Wolke, J. G. C., De Groot, K., “Microstructure and crystallinity in hydroxyapatite coatings”, Biomaterials, vol. 15, no. 5, pp. 396–399, Apr. 1994.

Mellali, M., Grimaud, A., Leger, A. C., et al., “Alumina grit blasting parameters for surface preparation in the plasma spraying operation”, J. Therm. Spray Technol.,vol.6, no. 2, pp. 217–227, 1997.

COPETE, H., Obtención de Recubrimientos de Hidroxiapatita Comercial con Propiedades Mecánicas y Bioáctivas Aptas para su Uso en Implantes Biomédicos, Universidad de Antioquia. Facultad de ingeniería. Departamento de Ingeniería de Materiales., Medellín, 2016.

Conshohocken, W., “Standard guide for metallographic preparation of thermal sprayed coatings 1,” vol. 3, no. Reapproved 2014, pp. 1–5, 2015.

ASTM, I., “Standard test method for vickers indentation hardness of advanced ceramics 1,” In: ASTM STANDARSS, 2015.

F1147, A., “Standard test method for tension testing of calcium phosphate and metallic coatings,” vol. 5, no. Reapproved 2011, pp. 1–8, 2013.

STANDARD, I., “Implants for surgery-hydroxyapatite,” vol. 2008, 2009.

Gross, K., Berndt, C. C., “Oxyapatite in hydroxyapatite coatings oxyapatite in hydroxyapatite coatings”, J. Mater. Sci.,1998.

Venkatesh, B. D., Chen, D. L., Bhole, S. D., “Effect of heat treatment on mechanical properties of Ti–6Al–4Veli alloy”, Mater. Sci. Eng. A, vol. 506, no. 1–2, pp. 117–124, Apr. 2009.

Kweh, S. W. K., Khor, K. A., Cheang, P., “An in vitro investigation of plasma sprayed hydroxyapatite ( ha ) coatings produced with flame-spheroidized feedstock”, Biomaterials, vol. 23, pp. 775–785, 2002.

Fernández, J., Gaona, M., Guilemany, J. M., “Effect of heat treatments on hvof hydroxyapatite coatings”, J. Therm. Spray Technol.,vol. 16, no. 2, pp. 220–228, May. 2007.

Published

2017-06-05

How to Cite

Gómez Pérez, J., López, M. E., Copete López, H., & Vargas Galvis, F. (2017). Effect of heat treatments with air atmosphere in the performance in vitro and adherence of oxy-fuel thermal sprayed hydroxyapatite coatings. Revista Colombiana De Materiales, (10), 1–22. https://doi.org/10.17533/udea.rcm.327998

Issue

Section

Artículos