Recubrimientos base vidrios bioactivos por proyección térmica para aplicaciones en implantes ortopédicos: estado actual

Autores/as

  • Paola Forero Instituto Politécnico Nacional https://orcid.org/0000-0002-3987-8609
  • Francisco Romero Instituto Politécnico Nacional
  • Oscar Rojas Universidad de Antioquia
  • Astrid Giraldo Consejo Nacional de Ciencia y Tecnología (CONACYT), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) https://orcid.org/0000-0002-5056-7270
  • John Henao Consejo Nacional de Ciencia y Tecnología (CONACYT), Centro de Tecnología Avanzada A. C. ( CIATEQ) https://orcid.org/0000-0002-8954-6039

DOI:

https://doi.org/10.17533/udea.rcm.n16a04

Palabras clave:

recubrimientos, vidrio bioactivo, proyección térmica, implantes

Resumen


A continuación, se presenta una revisión del estado del arte de recubrimientos base vidrio bioactivo por proyección térmica. En este trabajo se explican algunos conceptos relevantes sobre las características y propiedades de los vidrios bioactivos, así como los métodos de síntesis para la obtención de estos materiales como materia prima para la proyección térmica. Se mencionan los esfuerzos que se han realizado en las últimas décadas para desarrollar recubrimientos base vidrio bioactivo para aplicaciones ortopédicas y se presenta una perspectiva hacia el futuro próximo en relación con este tipo de recubrimientos por proyección térmica.

|Resumen
= 230 veces | PDF
= 295 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Paola Forero, Instituto Politécnico Nacional

Ingeniera física, Estudiante de Doctorado, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) Unidad Querétaro, México.

Francisco Romero, Instituto Politécnico Nacional

Ingeniero bioquímico, Estudiante de Maestría, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Querétaro, México.

Oscar Rojas, Universidad de Antioquia

Ingeniero de Materiales, Estudiante de Doctorado en Ingeniería de Materiales, Investigador del grupo GIPIMME, Universidad de Antioquia, Medellín, Colombia.

Astrid Giraldo, Consejo Nacional de Ciencia y Tecnología (CONACYT), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)

Catedrática CONACYT - CINVESTAV asignada al Laboratorio Nacional de Proyección Térmica. Doctora en Ciencias con la Especialidad en Materiales, CINVESTAV-Qro. Maestra en Ciencias-Física Universidad Nacional de Colombia, sede Manizales. Ingeniera Física, Universidad Nacional de Colombia, sede Manizales. Amplia experiencia en procesos de síntesis, caracterización y procesamiento de materiales biocompatibles para aplicaciones en la industria biomédica. Experiencia en procesos de proyección térmica. Miembro del SNI nivel I.

John Henao, Consejo Nacional de Ciencia y Tecnología (CONACYT), Centro de Tecnología Avanzada A. C. ( CIATEQ)

Catedrático CONACYT comisionado a CIATEQ A.C. Unidad Queretaro, en donde adelanta temas de investigación relacionados con el desarrollo de recubrimientos biocompatibles por proyección HVOF-APS. Miembro del SNI nivel I y del laboratorio nacional CENAPROT. Experiencia en el uso de diferentes técnicas de proyección térmica, en especial, la proyección fria (cold gas spray) de alta presión, HVOF y plasma spray. Dentro de sus publicaciones mas relevantes relacionadas con la proyección térmica se destacan los trabajos realizados en el desarrollo de recubrimientos metálicos amorfos por cold spray y el depósito de recubrimientos cerámicos resistentes al choque térmico.  Actualmente, su tema de cátedra esta enfocado en el desarrollo de recubrimientos biocompatibles principalmente por HVOF, plasma spray y cold spray.

Citas

Evans, J. T., Evans, J. P., Walker, R. W., etal., “How long does a hip replacement last? a systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up”, Lancet (London, England), vol. 393, núm. 10172, pp. 647–654, 2019.

Goodman, S. B.,Barrena, E. G., Takagi, M., et al., “Biocompatibility of total joint replacements: a review”, J. Biomed. Mater. Res. -Part A, vol. 90, núm. 2, pp. 603–618, 2009.

Chethan, K. N., Satish Shenoy, B., Shyamasunder Bhat, N., “Role of different orthopedicbiomaterials on wear of hip joint prosthesis: a review”, Mater. Today Proc., vol. 5, núm. 10, pp. 20827–20836, 2018.

Kunčická, L., Kocich, R., Lowe, T. C., “Advances in metals and alloys for joint replacement”, Prog. Mater. Sci., vol. 88, pp. 232–280, 2017.

Manam, N. S., Harun, W. S. W., Shri, D. N. A., etal., “Study of corrosion in biocompatible metals for implants: a review”, J. Alloys Compd., vol. 701, pp. 698–715, 2017.

Gilbert, J. L., “Corrosion in the human body: metallic implants in the complex body environment”, Corrosion, vol. 73, núm. 12, pp. 1478–1495, 2017.

Manivasagam, G., Dhinasekaran, D., Rajamanickam, A., “Biomedical implants: corrosion and its prevention -a review”, Recent Patents Corros. Sci., vol. 2, núm. 1, pp. 40–54, jun. 2010.

Aksakal, B., Gavgali, M., Dikici, B., “The effect of coating thickness on corrosion resistance of hydroxyapatite coated ti6al4v and 316l ss implants”, J. Mater. Eng. Perform., vol. 19, núm. 6, pp. 894–899, 2010.

Arcos, D., Vallet-Regí, M., “Substituted hydroxyapatite coatings of bone implants”, J. Mater. Chem. B, vol. 8, núm. 9, pp. 1781–1800, 2020.

Ben-nissan, B., Advances In Calcium Phosphate Biomaterials vol.2, núm. June 2016, 2014.

Mohseni, E., Zalnezhad, E.,Bushroa, A. R., “Comparative investigation on the adhesion of hydroxyapatite coating on ti-6al-4v implant: a review paper”, Int. J. Adhes. Adhes., vol. 48, pp. 238–257, 2014.

Boccaccini;, B. H., Bioactive Glasses: Fundamentals, Technology And Applications, 2016.

Bio-Glasses: An Introduction, J. R. Jones, y A. G. Clare, , John Wiley & Sons, Ltd, Chichester, UK, 2012.

Baddeley, M., “Keynes on rationality, expectations and investment”, Keynes, Post-Keynesianism Polit. Econ., pp. 570–592, 1999.

Vahabzadeh, S., Roy, M., Bandyopadhyay, A., etal., “Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications”, Acta Biomater., vol. 17, núm. January, pp. 47–55, 2015.

Heimann, R. B., Lehmann, H. D., Bioceramic Coatings For Medical Implants, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015.

Pawlowski, L., The Science And Engineering Of Thermal Spray Coatings, John Wiley & Sons, Ltd, Chichester, UK, 2008.

Cannillo, V., Sola, A., “Different approaches to produce coatings with bioactive glasses: enamelling vs plasma spraying”, J. Eur. Ceram. Soc., vol. 30, núm. 10, pp. 2031–2039, 2010.

Hench, L. L., Splinter, R. J., Allen, W. C., etal., “Bonding mechanisms at the interface of ceramic prosthetic materials”, J. Biomed. Mater. Res., vol. 5, núm. 6, pp. 117–141, 1971.

Hench, L. L., “Biomaterials: a forecast for the future”, Biomaterials, vol. 19, núm. 16, pp. 1419–1423, 1998.

Jones, J.R., “Review of bioactive glass: from hench to hybrids”, Acta Biomater., vol. 9, núm. 1, pp. 4457–4486, 2013.

Vollenweider, M., Brunner, T. J., Knecht, S., etal., “Remineralization of human dentin using ultrafine bioactive glass particles”, Acta Biomater., vol. 3, núm. 6, pp. 936–943, nov. 2007.

Hench, L. L., “The story of bioglass®”, J. Mater. Sci. Mater. Med., vol. 17, núm. 11, pp. 967–978, 2006.

Xynos, I. D., Edgar, A. J., Buttery, L. D. K., etal., “Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass�45s5 dissolution”, J. Biomed. Mater. Res., vol. 55, núm. 2, pp. 151–157, may. 2001.

Rahaman, M. N., Day, D. E., Sonny Bal, B., etal., “Bioactive glass in tissue engineering”, Acta Biomater., vol. 7, núm. 6, pp. 2355–2373, 2011.

Introduction To Glass Science And Technology, Royal Society of Chemistry, Cambridge, 2007.

Kaur, G., Bioactive Glasses, Springer International Publishing, Cham, 2017.

Bronowski, J., “Other glasses”, In: Struct. Chem. Glas., , Elsevier, 2002.

Mysen, B., Richet, P., “Properties of metal oxide-silica systems”, In: Silic. Glas. Melts, , Elsevier, 2019.

Mysen, B., Richet, P., “Glass versus melt”, In: Silic. Glas. Melts, , Elsevier, 2019.

Pelton, A. D., Wu, P., “Thermodynamic modeling in glass-forming melts”, J. Non. Cryst. Solids, vol. 253, núm. 1–3, pp. 178–191, ago. 1999.

Aguiar, H., González, P., Serra, J., Bioactive Glass Structure And Solubility, Elsevier Ltd., 2018.

Hench, L. L., “Bioceramics: from concept to clinic. j am ceram soc. 1993;72:93-98.”, J. Am. Ceram. Soc., vol. 74, pp. 1487–1510, 1991.

Lepry, W. C., Nazhat, S. N., “The anomaly in bioactive sol–gel borate glasses”, Mater. Adv., vol. 1, núm. 5, pp. 1371–1381, 2020.

Mazelev, L. Y., Borate Glassesvol. 12, 1960.

Yao, A., Wang, D., Huang, W., etal., “In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior”, J. Am. Ceram. Soc., vol. 90, núm. 1, pp.303–306, 2007.

Rahaman, M. N., Bioactive Ceramics And Glasses For Tissue Engineering, 2014.

Miguez-Pacheco, V., Hench, L. L., Boccaccini, A. R., “Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues”, Acta Biomater., vol. 13, pp. 1–15, 2015.

Ahmed, I., Lewis, M., Olsen, I., etal., “Phosphate glasses for tissue engineering: part 1. processing and characterisation of a ternary-based p2o5-cao-na 2o glass system”, Biomaterials, vol. 25, núm. 3, pp. 491–499, 2004.

Fagerlund, S., Hupa, L., “Chapter 1. melt-derived bioactive silicate glasses”.

Palard, M., Champion, E., Foucaud, S., “Synthesis of silicated hydroxyapatite ca10(po4)6−x(sio4)x(oh)2−x”, J. Solid State Chem., vol. 181, núm. 8, pp. 1950–1960, ago. 2008.

Stipniece, L., Salma-Ancane, K., Borodajenko, N., etal., “Characterization of mg-substituted hydroxyapatite synthesized by wet chemical method”, Ceram. Int., vol. 40, núm. 2, pp. 3261–3267, mar. 2014.

Renno, A. C. M., Bossini, P. S., Crovace, M. C., etal., “Characterization and in vivo biological performance of biosilicate”, Biomed Res. Int., vol. 2013, pp. 1–7, 2013.

Takadama, H., Kokubo, “In vitro evaluation of bone bioactivity”, In: Bioceram. Their Clin. Appl., ,Elsevier, 2008.

Mozafari, M., Banijamali, S., Baino, F., etal., “Calcium carbonate: adored and ignored in bioactivity assessment”, Acta Biomater., vol. 91, pp. 35–47, jun. 2019.

Lazaro, G. S., Santos, S. C., Almeida, L. E., etal., “The equilibrium between calcite and apatite precipitation onto bioglass from three different aqueous media”, Key Eng. Mater., vol. 493–494, pp. 102–107, oct. 2011.

Fujita, Y., Yamamuro, T., Nakamura, T., etal., “The bonding behavior of calcite to bone”, J. Biomed. Mater. Res., vol. 25, núm. 8, pp. 991–1003, ago. 1991.

Monchau, F., Hivart, P., Genestie, B., etal., “Calcite as a bone substitute. comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity”, Mater. Sci. Eng. C, vol. 33, núm. 1, pp. 490–498, ene. 2013.

Oonishi, H., Hench, L. L., Wilson, J., etal., “Quantitative comparison of bone growth behavior in granules of bioglass®, a-w glass-ceramic, and hydroxyapatite”, J. Biomed. Mater. Res., vol. 51, núm. 1, pp. 37–46, jul. 2000.

Silver, I. A., Deas, J., Erecińska, M., “Interactions of bioactive glasses with osteoblasts in vitro: effects of 45s5 bioglass®, and 58s and 77s bioactive glasses on metabolism, intracellular ion concentrations and cell viability”, Biomaterials, vol. 22, núm. 2, pp. 175–185, ene. 2001.

Romanò, C. L., Logoluso, N., Meani, E., etal., “A comparative study of the use of bioactive glass s53p4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis”, Bone Joint J., vol. 96-B, núm. 6, pp. 845–850, jun. 2014.

Bigoni, M., Turati, M., Zanchi, N., etal., “Clinical applications of bioactive glass s53p4 in bone infections: a systematic review”, Eur. Rev. Med. Pharmacol. Sci., vol. 23, núm. 2, pp. 240–251, 2019.

Mori, H., “Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide”, J. Mater. Sci., vol. 38, núm. 16, pp. 3461–3468, 2003.

Guglielmi, M., Barboux, P., “The sol-gel method for the synthesis of glasses, ceramics and hybrid materials”, Radiat. Eff. Defects Solids, vol. 134, núm. 1–4, pp. 31–37, dic. 1995.

Handbook Of Bioceramics And Biocomposites, I. V. Antoniac. Springer International Publishing, Cham, 2016.

López Calvo, V., Vicent Cabedo, M., Bannier, E., etal., “45S5 bioactive glass coatings by atmospheric plasma spraying obtained from feedstocks prepared by different routes”, J. Mater. Sci., vol. 49, núm. 23, pp. 7933–7942, dic. 2014.

Rojas, O., Prudent, M., López, M. E., etal., “Influence of atmospheric plasma spraying parameters on porosity formation in coatings manufactured from 45s5 bioglass® powder”, J. Therm. Spray Technol., vol. 29, núm. 1–2, pp. 185–198, ene. 2020.

Bahniuk, M. S., Pirayesh, H., Singh, H. D., etal., “Bioactive glass 45s5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma”, Biointerphases, vol. 7, núm. 1, p. 41, dic. 2012.

Henao, J., Poblano-Salas, C. A., Vargas, F., etal., “Principles and applications of thermal spray coatings”, 2021.

Károly, Z., Szépvölgyi, J., Trichet, A., etal., “Behavior of silica particles of different microstructure on rf thermal plasma treatment”, J. Mater. Sci. Lett., vol. 21, núm. 24, pp. 1943–1945, 2002.

Károly, Z., Szépvölgyi, J., “Hollow alumina microspheres prepared by rf thermal plasma”, Powder Technol., vol. 132, núm. 2–3, pp. 211–215, jun. 2003.

Lee, W., Choi, S., Oh, S.-M., etal., “Preparation of spherical hollow alumina particles by thermal plasma”, Thin Solid Films, vol. 529, pp. 394–397, feb. 2013.

Poirier, T., Quercia, G., “Formation of hollow vitreous and semi-crystalline microspheres in slag flame spraying”, Ceram. Int., vol. 41, núm. 1, pp. 369–377, ene. 2015.

Hossain, K. M. Z., Patel, U., Kennedy, A. R., etal., “Porous calcium phosphate glass microspheres for orthobiologic applications”, Acta Biomater., vol. 72, pp. 396–406, may. 2018.

Kraxner, J., Michalek, M., Romero, A. R., etal., “Porous bioactive glass microspheres prepared by flame synthesis process”, Mater. Lett., vol. 256, p. 126625, dic. 2019.

Fauchais, P. L., Heberlein, J. V. R., Boulos, M. I., Thermal Spray Fundamentals, Springer US, Boston, MA, 2014.

Bolelli, G., Bellucci, D., Cannillo, V., etal., “Comparison between suspension plasma sprayed and high velocity suspension flame sprayed bioactive coatings”, Surf. Coatings Technol., vol.280, pp. 232–249, oct. 2015.

Thermal Spray Technology, R. C. Tucker, , ASM International, 2013.

Henao, J., Poblano-Salas, C., Monsalve, M., etal., “Bio-active glass coatings manufactured by thermal spray: a status report”, J. Mater. Res. Technol., vol. 8, núm. 5, pp. 4965–4984, 2019.

Helsen, J. A., Proost, J., Schrooten, J., etal., “Glasses and bioglasses: synthesis and coatings”, J. Eur. Ceram. Soc., vol. 17, núm. 2–3, pp. 147–152, ene. 1997.

Monsalve, M., Ageorges, H., Lopez, E., etal., “Bioactivity and mechanical properties of plasma-sprayed coatings of bioglass powders”, Surf. Coatings Technol., vol. 220, pp. 60–66, 2013.

Göller, G., Oktar, F. N., Yazıcı, T., etal., “Characterization of plasma sprayed bioglass coatings on titanium”, Key Eng. Mater., vol. 240–242, pp. 283–286, may. 2003.

Bano, S., Ahmed, I., Grant, D. M., etal., “Effect of processing on microstructure, mechanical properties and dissolution behaviour in sbf of bioglass (45s5) coatings deposited by suspension high velocity oxy fuel (shvof) thermal spray”, Surf. Coatings Technol., vol. 372, pp. 229–238, ago. 2019.

Cañas, E., Grünewald, A., Detsch, R., etal., “In vitro study of bioactive glass coatings obtainedby atmospheric plasma spraying”,Bol. La Soc. Esp. Ceram. Y Vidr., 2020.

Altomare, L., Bellucci, D., Bolelli, G., etal., “Microstructure and in vitro behaviour of 45s5 bioglass coatings deposited by high velocity suspension flame spraying (hvsfs)”, J. Mater. Sci. Mater. Med., vol.22, núm. 5, pp. 1303–1319, may. 2011.

Lopez-Esteban, S., Saiz, E., Fujino, S., etal., “Bioactive glass coatings for orthopedic metallic implants”, J. Eur. Ceram. Soc., vol. 23, núm. 15, pp. 2921–2930, ene. 2003.

Sergi, R., Bellucci, D., Cannillo, V., “A comprehensive review of bioactive glass coatings: state of the art, challenges and future perspectives”, Coatings, vol. 10, núm. 8, p. 757, ago. 2020.

Oliver, J. N., Su, Y., Lu, X., etal., “Bioactive glass coatings on metallic implants for biomedical applications”, Bioact. Mater., vol. 4, pp. 261–270, dic. 2019.

Yadav, V. S., Sankar, M. R., Pandey, L. M., “Coating of bioactive glass on magnesium alloys to improve its degradation behavior: interfacial aspects”, J. Magnes. Alloy., jun. 2020.

Zhang, M., Pu, X., Chen, X., etal., “In-vivo performance of plasma-sprayed cao–mgo–sio2-based bioactive glass-ceramic coating on ti–6al–4v alloy for bone regeneration”, Heliyon, vol. 5, núm. 11, p. e02824, nov. 2019.

Cañas, E., Díaz, M., Alcázar, C., etal., “Comparison of different silica sources in the development of plasma sprayed 45s5 bioactive glass coatings”, J. Non. Cryst. Solids, vol. 544, p. 120164, sep. 2020.

Descargas

Publicado

2021-01-29

Cómo citar

Forero, P., Romero, F., Rojas, O., Giraldo, A., & Henao, J. (2021). Recubrimientos base vidrios bioactivos por proyección térmica para aplicaciones en implantes ortopédicos: estado actual. Revista Colombiana De Materiales, (16), 70–89. https://doi.org/10.17533/udea.rcm.n16a04

Número

Sección

Artículos