UHMWPE in total knee arthroplasty: successes and failures

  • Nayeli Camacho Centre for Engineering and Industrial Development (CIDESI)
  • Juan Manuel González Carmona Centre for Engineering and Industrial Development (CIDESI)
  • Diego Espinosa Arbeláez Centre for Engineering and Industrial Development (CIDESI)
  • Guillermo César Mondragón Centre for Engineering and Industrial Development (CIDESI)
  • Stephen Stafford Sistema Universitario de Texas
Palabras clave: polietileno de ultra alto peso molecular (UHMWPE), desgaste de UHMWPE, materiales compuestos de UHMWPE, reemplazo total de rodilla

Resumen

El polietileno de ultra alto peso molecular (UHMWPE por sus siglas en inglés) ha sido el estándar de oro para los reemplazos de rodilla durante más de cinco décadas. Este biomaterial, utilizado ampliamente en el sector ortopédico, ha sido constantemente modificado para disminuir su tasa de desgaste en las prótesis de rodilla. Hoy en día, los reemplazos totales de rodilla tienen una tasa de supervivencia del 95 % después de 10 años, 88.7 % después de 15, y 82 % después de 25 años. Sin embargo, la vida útil del componente de UHMWPE a menudo se limita entre los 15 a 20 años, ya que el daño por desgaste de las superficies del UHMWPE es inevitable. En pacientes más jóvenes y más activos, el desgaste puede acelerarse, generando una cantidad considerable de partículas y provocando una falla prematura. Se han reportado reacciones adversas en el tejido circundante de la articulación de la rodilla debido a la presencia de estas partículas, especialmente en el rango de 0.3 to 2 μm, que a menudo conducen a un aflojamiento aséptico inducido por osteólisis. Las investigaciones se han centrado en mejorar la resistencia al desgaste y el rendimiento del UHMWPE. En este trabajo, se analiza el comportamiento de desgaste y el rendimiento clínico del UHMWPE desde el punto de vista de la ciencia de los materiales, así como las modificaciones existentes para mejorar la resistencia al desgaste de este polímero; la reticulación mediante irradiación gamma, la estabilización de vitamina E y la incorporación de diferentes nanopartículas.

|Resumen
= 169 veces | PDF (ENGLISH)
= 171 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Nayeli Camacho, Centre for Engineering and Industrial Development (CIDESI)

Doctora, CIDESI - Centro Nacional de Tecnologías Aeronáuticas (CENTA).

Juan Manuel González Carmona, Centre for Engineering and Industrial Development (CIDESI)

Dr., CIDESI - CONMAD, Departamento de Ingeniería de Superficies y Fabricación Aditiva.

Diego Espinosa Arbeláez, Centre for Engineering and Industrial Development (CIDESI)

Dr., CIDESI - CONMAD, Departamento de Ingeniería de Superficies y Fabricación Aditiva.

Guillermo César Mondragón, Centre for Engineering and Industrial Development (CIDESI)

Dr., CIDESI - CONMAD, Departamento de Ingeniería de Superficies y Fabricación Aditiva.

Stephen Stafford, Sistema Universitario de Texas

Doctor, Sistema Universitario de Texas, Departamento de Ingeniería Metalúrgica, de Materiales y Biomédica.

Citas

J. Baena, J. Wu, and Z. Peng, “Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review,” Lubricants, vol. 3, no. 2. pp. 413–436, 2015, doi: 10.3390/lubricants3020413.

A. S. Ranawat and C. S. Ranawat, “The history of total knee arthroplasty,” The Knee Joint. pp. 699–707, 2012, doi: 10.1007/978-2-287-99353-4_63.

S. M. Kurtz et al., “International survey of primary and revision total knee replacement,” Int. Orthop., vol. 35, no. 12, pp. 1783–1789, Dec. 2011.

A. M. Kandahari, X. Yang, K. A. Laroche, A. S. Dighe, D. Pan, and Q. Cui, “A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response,” Bone Research, vol. 4, no. 1. 2016, doi: 10.1038/boneres.2016.14.

M. Nine, D. Choudhury, A. Hee, R. Mootanah, and N. Osman, “Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints,” Materials, vol. 7, no. 2. pp. 980–1016, 2014, doi: 10.3390/ma7020980.

M. C. S. Inacio, E. W. Paxton, S. E. Graves, R. S. Namba, and S. Nemes, “Projected increase in total knee arthroplasty in the United States –an alternative projection model,” Osteoarthritis and Cartilage, vol. 25, no. 11. pp. 1797–1803, 2017, doi: 10.1016/j.joca.2017.07.022.

L. Leitner et al., “Trends and Economic Impact of Hip and Knee Arthroplasty in Central Europe: Findings from the Austrian National Database,” Sci. Rep., vol.8, no. 1, p. 4707, Mar. 2018.

E. M. B. del Prever, E. M. B. del Prever, A. Bistolfi, P. Bracco, and L. Costa, “UHMWPE for arthroplasty: past or future?,” Journal of Orthopedics and Traumatology, vol. 10, no. 1. pp. 1–8, 2009, doi: 10.1007/s10195-008-0038-y.

M. C. Sobieraj and C. M. Rimnac, “Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior,” J. Mech. Behav. Biomed. Mater., vol. 2, no. 5, pp. 433–443, Oct. 2009.

B. P. Chang, H. M. Akil, R. B. Nasir, and A. Khan, “Optimization on wear performance of UHMWPE composites using response surface methodology,” Tribology International, vol. 88. pp. 252–262, 2015, doi: 10.1016/j.triboint.2015.03.028.

M. J. Martínez-Morlanes, P. Castell, V. Martínez-Nogués, M. T. Martinez, P. J. Alonso, and J. A. Puértolas,“Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites,” Composites Science and Technology, vol. 71, no. 3. pp. 282–288, 2011, doi: 10.1016/j.compscitech.2010.11.013.

Y. Xue, W. Wu, O. Jacobs, and B. Schädel, “Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes,” Polymer Testing, vol. 25, no. 2. pp. 221–229, 2006, doi: 10.1016/j.polymertesting.2005.10.005.

S. F. E, F. E. S., L. Shi, Z. G. Guo, and W. M. Liu, “The recent progress of tribological biomaterials,” Biosurface and Biotribology, vol. 1, no. 2. pp. 81–97, 2015, doi: 10.1016/j.bsbt.2015.06.002.

M. K. Musib, “A Reviewof the History and Role of UHMWPE as A Component in Total Joint Replacements,” International Journal of Biological Engineering, vol. 1, no. 1. pp. 6–10, 2012, doi: 10.5923/j.ijbe.20110101.02.

C. Fabry, C. Zietz, R. Dammer, and R. Bader, “12 Patterns of Wear in Total Knee Replacement,” The Unhappy Total Knee Replacement. pp. 135–145, 2015, doi: 10.1007/978-3-319-08099-4_13.

https://pdfs.semanticscholar.org/cc0e/7ae4c4f6022ef1011014b4d9740e802fb8c3.pdf (accessed May 20, 2020).

G. W. Stachowiak, “Friction and Wear of Polymers, Ceramics and Composites in Biomedical Applications,” Advances in Composite Tribology. pp. 509–557, 1993, doi: 10.1016/b978-0-444-89079-5.50018-0.

P. Massin, “How does total knee replacement technique influence polyethylene wear?,” Orthop. Traumatol. Surg. Res., vol. 103, no. 1S, pp. S21–S27, Feb. 2017.

J. Netter, J. Hermida, C. Flores-Hernandez, N. Steklov, M. Kester, and D. D’Lima, “Prediction of Wear in Crosslinked Polyethylene Unicompartmental Knee Arthroplasty,” Lubricants, vol. 3, no. 2. pp. 381–393, 2015, doi: 10.3390/lubricants3020381.

M. Akagi et al., “Wear and toughness of crosslinked polyethylene for total knee replacements: a study using a simulator and small-punch testing,” J. Orthop. Res., vol. 24, no. 10, pp. 2021–2027, Oct. 2006.

J. S. Bergström, C. M. Rimnac, and S. M.Kurtz, “Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model,” Biomaterials, vol. 24, no. 8, pp. 1365–1380, Apr. 2003.

S. H. User, “American Joint Replacement Registry Releases 2018 Annual Report.” http://blog.ajrr.net/american-joint-replacement-registry-releases-2018-annual-report (accessed May 20, 2020).

R. Lerf, D. Zurbrügg, and D. Delfosse, “Use of vitamin E to protect cross-linked UHMWPE from oxidation,” Biomaterials, vol. 31, no. 13, pp. 3643–3648, May 2010.

E. Oral, C. Godleski Beckos, A. S. Malhi, and O. K. Muratoglu, “The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahigh molecular weight polyethylene,” Biomaterials, vol. 29, no. 26, pp. 3557–3560, Sep. 2008.

E. Oral, A. Neils, and O. K. Muratoglu, “High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 103, no. 4. pp. 790–797, 2015, doi: 10.1002/jbm.b.33256.

B.-P. Chang, H. M. Akil, and R. B. M. Nasir, “Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear,” Wear, vol. 297, no. 1–2. pp. 1120–1127,2013, doi: 10.1016/j.wear.2012.11.083.

B. P. Chang, H. M. Akil, and R. M. Nasir, “Mechanical and Tribological Properties of Zeolite-reinforced UHMWPE Composite for Implant Application,” Procedia Engineering, vol. 68. pp. 88–94, 2013, doi: 10.1016/j.proeng.2013.12.152.

K. Plumlee and C. J. Schwartz, “Improved wear resistance of orthopedic UHMWPE by reinforcement with zirconium particles,” Wear, vol. 267, no. 5–8. pp. 710–717, 2009, doi: 10.1016/j.wear.2008.11.028.

L. Fang, Y. Leng, and P. Gao, “Processing and mechanical properties of HA/UHMWPE nanocomposites,” Biomaterials, vol. 27, no. 20, pp. 3701–3707, Jul. 2006.

L. Fang, P. Gao, and Y. Leng, “High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene,”Composites Part B: Engineering, vol. 38, no. 3. pp. 345–351, 2007, doi: 10.1016/j.compositesb.2006.05.004.

N. T. Dintcheva et al., “Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites,” Composites Part B: Engineering, vol. 82. pp. 196–204, 2015, doi: 10.1016/j.compositesb.2015.07.017.

A. Fonseca, S. Kanagaraj, M. S. A. Oliveira, and J. A. O.Simões, “Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Milling,” Defect and Diffusion Forum, vol. 312–315. pp. 1238–1243, 2011, doi: 10.4028/www.scientific.net/ddf.312-315.1238.

M. Pöllänen, S. Pirinen, M. Suvanto, and T. T. Pakkanen, “Influence of carbon nanotube–polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene,” Compos. Sci. Technol., vol. 71, no. 10, pp. 1353–1360, Jul. 2011.

S. L. Ruan, P. Gao, X. G. Yang, and T. X. Yu, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polymer, vol. 44, no. 19. pp. 5643–5654, 2003, doi: 10.1016/s0032-3861(03)00628-1.

P. S. R. Sreekanth, P. S. Rama Sreekanth, and S. Kanagaraj, “Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE,” Wear, vol. 334–335. pp. 82–90, 2015, doi: 10.1016/j.wear.2014.12.014.

S. Suñer, C. L. Bladen, N. Gowland, J. L. Tipper, and N. Emami, “Investigation of wear and wear particles from a UHMWPE/multi-walled carbon nanotube nanocomposite for total joint replacements,” Wear, vol. 317, no. 1–2. pp. 163–169, 2014, doi: 10.1016/j.wear.2014.05.014.

Y.-S. Zoo, J.-W. An, D.-P. Lim, and D.-S. Lim, “Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE,” Tribology Letters, vol. 16, no. 4. pp. 305–309, 2004, doi: 10.1023/b:tril.0000015206.21688.87.

J. A. Puértolas and S. M. Kurtz, “Evaluationof carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review,” J. Mech. Behav. Biomed. Mater., vol. 39, pp. 129–145, Nov. 2014.

D. Lahiri, F. Hec, M. Thiesse, A. Durygin, C. Zhang, and A. Agarwal, “Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites,” Tribology International, vol. 70. pp. 165–169, 2014, doi: 10.1016/j.triboint.2013.10.012.

P.-G. Ren, Y.-Y. Di, Q. Zhang, L. Li, H. Pang, and Z.-M. Li, “Composites of Ultrahigh-Molecular-Weight Polyethylene with Graphene Sheets and/or MWCNTs with Segregated Network Structure: Preparation and Properties,” Macromolecular Materials and Engineering, vol. 297, no. 5. pp. 437–443, 2012, doi: 10.1002/mame.201100229.

A. Chih, A. Ansón-Casaos, and J. A. Puértolas, “Frictional and mechanical behaviour of graphene/UHMWPE composite coatings,” Tribology International, vol. 116. pp. 295–302, 2017, doi: 10.1016/j.triboint.2017.07.027.

Z. You and D. Li, “The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites,” Materials Letters, vol. 112. pp. 197–199, 2013, doi: 10.1016/j.matlet.2013.09.013.

M. C. Sobieraj and C. M. Rimnac, “Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior,”J. Mech. Behav. Biomed. Mater., vol. 2, no. 5, pp. 433–443, Oct. 2009.

B. Hunt and T. Joyce, “A Tribological Assessment of Ultra High Molecular Weight Polyethylene Types GUR 1020 and GUR 1050 for Orthopedic Applications,” Lubricants, vol. 4, no. 3. p. 25, 2016, doi: 10.3390/lubricants4030025.

S. M. Kurtz, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement. Elsevier, 2004.

S. Affatato, A. Ruggiero, and M. Merola, “Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings,” Composites Part B: Engineering, vol. 83. pp. 276–283, 2015, doi: 10.1016/j.compositesb.2015.07.019.

K. S. Kanaga Karuppiah et al., “Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity,” Acta Biomater., vol. 4, no. 5, pp. 1401–1410, Sep. 2008.

M. Hussain et al., “Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review,” Polymers , vol. 12, no. 2, Feb. 2020, doi: 10.3390/polym12020323.

M. Khan, K. Osman, G. Green, and F. S. Haddad, “The epidemiology of failure in total knee arthroplasty,” The Bone & Joint Journal, vol. 98-B, no. 1_Supple_A. pp. 105–112, 2016, doi: 10.1302/0301-620x.98b1.36293.

A. Postler, C. Lützner, F. Beyer, E. Tille, and J. Lützner, “Analysis of Total Knee Arthroplasty revision causes,” BMC Musculoskelet. Disord., vol. 19, no. 1, p. 55, Feb. 2018.

C. L. Brockett, S. Carbone, J. Fisher, and L. M. Jennings, “Influence of conformity on the wear of total knee replacement: An experimental study,” Proc. Inst. Mech. Eng. H, vol. 232, no. 2, pp. 127–134, Feb. 2018.

S. Liza, A S M, A. A. Abbas, and H. H. Masjuki, “Failure analysis of retrieved UHMWPE tibial insert in total knee replacement,” Engineering Failure Analysis, vol. 18, no. 6. pp. 1415–1423, 2011, doi: 10.1016/j.engfailanal.2011.04.001.

D. Bitar and J. Parvizi, “Biological response to prosthetic debris,” WorldJ. Orthop., vol. 6, no. 2, pp. 172–189, Mar. 2015.

Z. Gu, B. Huang, Y. Li, M. Tian, L. Li, and X. Yu, “Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 61, pp. 526–533, Apr. 2016.

J. Fisher et al., “A novel method for the prediction of functional biological activity of polyethylene wear debris,” Proc. Inst. Mech. Eng. H, vol. 215, no. 2, pp. 127–132, 2001.

https://www.ors.org/Transactions/63/2036.pdf (accessed Sep. 27, 2020).

C. H. Won, S. Rohatgi, M. J. Kraay, V. M. Goldberg, and C. M. Rimnac, “Effect of resin type and manufacturing method on wear of polyethylene tibial components,” Clin. Orthop. Relat. Res., no. 376, pp. 161–171, Jul. 2000.

E. Oral, K. K. Wannomae, N. Hawkins, W. H. W. H. Harris, and O. K. O. K. Muratoglu, “Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear,” Biomaterials, vol. 25, no. 24, pp. 5515–5522, Nov. 2004.

https://connect.ajrr.net/hubfs/PDFs%20and%20PPTs/AAOS_AJRR_2019_Annual_Report_Update_FINAL_150DPI.pdf?hsCtaTracking=1d80e9fa-66fe-4525-a5cb-15c30ec19a1f%7C8becda93-a51e-41cc-bcfa-ca9130c1add6 (accessed Sep. 29, 2020)

T. Liu, A. Eyler, and W.-H. Zhong, “Simultaneous improvements in wear resistance and mechanical properties of UHMWPE nanocomposite fabricated via a facile approach,” Materials Letters, vol. 177. pp. 17–20, 2016, doi: 10.1016/j.matlet.2016.04.072.

G. Lewis, “Properties of crosslinked ultra-high-molecular-weight polyethylene,” Biomaterials, vol. 22, no. 4. pp. 371–401, 2001, doi: 10.1016/s0142-9612(00)00195-2.

https://www.ors.org/Transactions/63/2036.pdf (accessed Sep. 29, 2020).

M. J. Martínez-Morlanes, P. Castell, P. J. Alonso, M. T. Martinez, and J. A. Puértolas, “Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites,” Carbon, vol. 50, no. 7. pp. 2442–2452, 2012, doi: 10.1016/j.carbon.2012.01.066.

S. M. Kurtz, O. K. Muratoglu, M. Evans, and A. A. Edidin, “Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty,” Biomaterials, vol. 20, no. 18, pp. 1659–1688, Sep. 1999.

S. M. Kurtz, M. L. Villarraga, M. P. Herr, J. S. Bergström, C. M. Rimnac, and A. A. Edidin, “Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements,” Biomaterials, vol. 23, no. 17, pp. 3681–3697, Sep. 2002.

K. W. Greer, R. S. King, and F. W. Chan, “The Effects of Raw Material, Irradiation Dose, and Irradiation Source on Crosslinking of UHMWPE,” Jaina, vol. 1, no. 1, pp. 1–11, Jan. 2004, Accessed: Sep. 29, 2020. [Online].

H. Haider et al., “Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty?,” J. Arthroplasty, vol. 27, no. 3, pp. 461–469, Mar. 2012.

S. M. Kurtz, UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. William Andrew, 2015.

C. Vaidya, E. Alvarez, J. Vinciguerra, D. A. Bruce, and J. D. DesJardins, “Reduction of total knee replacement wear with vitamin E blended highly cross-linked ultra-high molecular weight polyethylene,” Proc. Inst. Mech. Eng. H, vol. 225, no. 1, pp. 1–7, Jan. 2011.

K. Iwakiri et al., “In vivo comparison of wear particles between highly crosslinked polyethylene and conventional polyethylene in the same design of total knee arthroplasties,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 91, no. 2, pp. 799–804, Nov. 2009.

S. M. Kurtz, J. Dumbleton, R. S. Siskey, A. Wang, and M. Manley, “Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation,” J. Biomed. Mater. Res. A, vol. 90, no. 2, pp. 549–563, Aug. 2009.

S. M. Kurtz, D. Mazzucco, C. M. Rimnac, and D. Schroeder, “Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion,” Biomaterials, vol. 27, no. 1, pp. 24–34, Jan. 2006.

C. Wolf, T. Krivec, J. Blassnig, K. Lederer, and W. Schneider, “Examination of the suitabilityof alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses,” J. Mater. Sci. Mater. Med., vol. 13, no. 2, pp. 185–189, Feb.2002.

N. Tomita, T. Kitakura, N. Onmori, Y. Ikada, and E. Aoyama, “Prevention of fatigue cracks in ultrahigh molecular weight polyethylene joint components by the addition of vitamin E,” J. Biomed. Mater. Res., vol. 48, no. 4, pp. 474–478, 1999.

S. Teramura, H. Sakoda, T. Terao, M. M. Endo, K. Fujiwara, and N. Tomita, “Reduction of wear volume from ultrahigh molecular weight polyethylene knee components by the addition of vitamin E,” J. Orthop. Res., vol. 26, no. 4, pp. 460–464, Apr. 2008.

E. Oral and O. K. Muratoglu, “Vitamin E diffused, highly crosslinked UHMWPE: a review,” Int. Orthop., vol. 35, no. 2, pp. 215–223, Feb. 2011.

J.-Z. Xu, K. K. Wannomae, O. K. Muratoglu, and E. Oral, “Increased oxidative protection by high active vitamin E content and partial radiation crosslinking of UHMWPE,” J. Orthop. Res., vol. 36, no. 7, pp. 1860–1867, Jul. 2018.

E. Oral, S. D. Christensen, A. S. Malhi, K. K. Wannomae, and O. K. Muratoglu, “Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E,” J. Arthroplasty, vol. 21, no. 4, pp. 580–591, Jun. 2006.

G. Sui, W. H. Zhong, X. Ren, X. Q. Wang, and X. P. Yang, “Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers,” Materials Chemistry and Physics, vol. 115, no. 1. pp. 404–412, 2009, doi: 10.1016/j.matchemphys.2008.12.016.

F. M. Michael et al., “Effect of nanofillers on the physico-mechanical properties of load bearing bone implants,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 67, pp. 792–806, Oct. 2016.

P. S. Rama Sreekanth and S. Kanagaraj, “Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using Nanoindentation and microtensile testing,” J. Mech. Behav. Biomed. Mater., vol. 18, pp. 140–151, Feb. 2013.

D. Xiong, J. Lin, D. Fan, and Z. Jin, “Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication,” J. Mater. Sci. Mater. Med., vol. 18, no. 11, pp. 2131–2135, Nov. 2007.

G. Guofang, Y. Huayong, and F. Xin, “Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding,” Wear, vol. 256, no. 1–2. pp. 88–94, 2004, doi: 10.1016/s0043-1648(03)00394-6.

G. Gong, “TRIBOLOGICAL STUDIES OF KAOLIN FILLED UHMWPE COMPOSITES IN SLIDING AGAINST STEEL LUBRICATED WITH WATER,” Chinese Journal of Mechanical Engineering, vol. 38, no. supp. p. 172, 2002, doi: 10.3901/jme.2002.supp.172.

D. L. P. Macuvele et al., “Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 76, pp. 1248–1262, Jul. 2017.

C. J. Schwartz, S. Bahadur, and S. K. Mallapragada, “Effect of crosslinking and Pt–Zr quasicrystal fillers on the mechanical properties and wear resistance of UHMWPE for use in artificial joints,” Wear, vol. 263, no. 7–12. pp. 1072–1080, 2007, doi: 10.1016/j.wear.2006.10.023.

A. Ruggiero, R. D’Amato, and E. Gómez, “Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4alloy under dry and lubricated conditions,” Tribology International, vol. 92. pp. 154–161, 2015, doi: 10.1016/j.triboint.2015.06.005.

A. Golchin, A. Wikner, and N. Emami, “An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts,” Tribology International, vol. 95. pp. 156–161, 2016, doi: 10.1016/j.triboint.2015.11.023.

Y. Liu and S. K. Sinha, “Wear performances and wear mechanism study of bulk UHMWPE composites with nacre and CNT fillers and PFPE overcoat,” Wear, vol. 300, no. 1–2, pp. 44–54, Mar. 2013.

B. M. Amoli, B. Meschi Amoli, S. A. Ahmad Ramazani, and H. Izadi, “Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler-Natta catalytic system and investigation of their thermal and mechanical properties,” Journal of Applied Polymer Science, vol. 125, no. S1. pp. E453–E461, 2012, doi: 10.1002/app.36368.

J. A. Puértolas and S. M. Kurtz, “UHMWPE Matrix Composites,” UHMWPE Biomaterials Handbook. pp. 369–397, 2016, doi: 10.1016/b978-0-323-35401-1.00021-1.

N. Camacho, E. A. Franco-Urquiza, and S. W. Stafford, “Wear performance of multiwalled carbon nanotube-reinforced ultra-high molecular weight polyethylene composite,” Advances in Polymer Technology, vol. 37, no. 6. pp. 2261–2269, 2018, doi: 10.1002/adv.21885.

S. R. Bakshi, J. E. Tercero, and A. Agarwal, “Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique,” Composites Part A: Applied Science and Manufacturing, vol. 38, no. 12.pp. 2493–2499, 2007, doi: 10.1016/j.compositesa.2007.08.004.

R. M. Kumar, R. Manoj Kumar, S. K. Sharma, B. V. Manoj Kumar, and D. Lahiri, “Effects of carbon nanotubeaspect ratio on strengthening and tribological behavior of ultra high molecular weight polyethylene composite,” Composites Part A: Applied Science and Manufacturing, vol. 76. pp. 62–72, 2015, doi: 10.1016/j.compositesa.2015.05.007.

S. Yousef, A. Visco, G. Galtieri, D. Nocita, and C. Espro, “Wear behaviour of UHMWPE reinforced by carbon nanofiller and paraffin oilfor joint replacement,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 73, pp. 234–244, Apr. 2017.

S. Kanagaraj, M. S. A. Oliveira, and J. A. de Oliveira Simões, “Tribology of biocomposites,” Biomedical Composites. pp. 441–464, 2010, doi: 10.1533/9781845697372.3.441.

N. Camacho, S. Stafford, K. Garza, R. Suro, and K. Barron, “Ultra-High Molecular Weight Polyethylene Reinforced with Multiwall Carbon Nanotubes: In Vitro Biocompatibility Study Using Macrophage-Like Cells,” Lubricants, vol. 3, no. 3. pp. 597–610, 2015, doi: 10.3390/lubricants3030597.

N. T. Dintcheva et al., “Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites,” European Polymer Journal, vol. 75. pp. 525–537, 2016, doi: 10.1016/j.eurpolymj.2016.01.002.

S. Santangelo et al., “A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors,” Applied Surface Science, vol. 303. pp. 446–455, 2014, doi: 10.1016/j.apsusc.2014.03.023.

A. V. Maksimkin et al., “Bulk oriented nanocomposites of ultrahigh molecular weight polyethylene reinforced with fluorinated multiwalled carbon nanotubes with nanofibrillar structure,” Composites Part B: Engineering, vol. 94. pp. 292–298, 2016, doi: 10.1016/j.compositesb.2016.03.061.

M. A. Samad, M. Abdul Samad, and S. K. Sinha, “Mechanical, thermal and tribological characterization of a UHMWPE film reinforced with carbon nanotubes coated on steel,” Tribology International, vol. 44, no. 12. pp. 1932–1941, 2011, doi: 10.1016/j.triboint.2011.08.001.

N. T. Dintcheva et al., “α-Tocopherol-induced radical scavenging activity in carbon nanotubes for thermo-oxidation resistant ultra-high molecular weight polyethylene-based nanocomposites,” Carbon, vol. 74. pp. 14–21, 2014, doi: 10.1016/j.carbon.2014.02.074.

X. Qiao, M. Na, P. Gao, and K. Sun, “Halloysite nanotubes reinforced ultrahigh molecular weightpolyethylene nanocomposite films with different filler concentration and modification,” Polymer Testing, vol. 57. pp. 133–140, 2017, doi: 10.1016/j.polymertesting.2016.11.024.

L. Fang, Y. Leng, and P. Gao, “Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications,” Biomaterials, vol. 26, no. 17, pp. 3471–3478, Jun. 2005.

S. Sharma, J. Bijwe, and S. Panier, “Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE,” Composites Part B: Engineering, vol. 99. pp. 312–320, 2016, doi: 10.1016/j.compositesb.2016.06.003.

S. V. Panin, L. A. Kornienko, M. V. Chaikina, V. P. Sergeev, L. R. Ivanova, and S. V. Shilko, “Nano-and Micro-Structured UHMWPE Composites Filled With Hydroxyapatite Irradiated by Nitrogen Ion Beams for Bio-Medical Applications,” Russian Physics Journal, vol. 56, no. 10. pp. 1137–1143, 2014, doi: 10.1007/s11182-014-0153-6

Publicado
2021-01-26
Cómo citar
CamachoN., González CarmonaJ. M., Espinosa ArbeláezD., MondragónG. C., & StaffordS. (2021). UHMWPE in total knee arthroplasty: successes and failures. Revista Colombiana De Materiales, (16), 3-28. https://doi.org/10.17533/udea.rcm.n16a01
Sección
Artículos