Retos actuales y futuros en implantes de rodilla y cadera

  • Arturo Gómez Ortega Centro de Ingeniería y Desarrollo Industrial (CIDESI)
  • Guillermo Mondragón Rodríguez Centro de Ingeniería y Desarrollo Industrial (CIDESI)
  • Juan Manuel Alvarado Orozco Centro de Ingeniería y Desarrollo Industrial (CIDESI)
  • Nayeli Camacho Centro de Ingeniería y Desarrollo Industrial (CIDESI)
Palabras clave: artroplastia de rodilla, artroplastia de cadera, prótesis ortopédicas, impresión 3D, manufactura aditiva, funcionalización de superficies, auto-lubricantes

Resumen

En este trabajo se realizó un análisis de la artroplastia de rodilla y de cadera con el fin de identificar los avances más recientes en estos tópicos, así como los retos y perspectivas futuras que se presentan tanto en el ámbito quirúrgico como en el desarrollo de los reemplazos articulares y sus materiales. México cuenta con una gran experiencia clínica en la colocación de prótesis para reemplazo articular de  rodilla, cadera, hombro, mano, y tobillo. Asimismo, la experiencia clínica en la colocación de implantes maxilo- y craneo-faciales es extensa. Sin embargo, el resultado del Simposio Nacional - Prótesis ortopédicas: Estatus actual en México (https://protesismexico.com/) mostró que hay una necesidad imperante de diseñar y fabricar implantes que se adapten a la población mexicana, buscando la personalización. Por su parte, en México, la investigación de los materiales para implantes ortopédicos se encuentran en un estado incipiente, pero con perspectivas muy prometedoras en diseño y manufactura aditiva de componentes personalizados, así como sistemas auto-lubricantes que prometen mejores resultados en comparación con sistemas actualmente ofertados en el mercado. El desarrollo de materiales como polímeros de alto peso molecular modificados con nanotubos de carbón o grafeno, así como superficies funcionalizadas con recubrimientos a base de carbón y compuestos tipo diamante, que presentan características auto-lubricantes, podrían incrementar la durabilidad de los implantes, mejorando la calidad de vida para los pacientes.

|Resumen
= 303 veces | PDF
= 325 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Arturo Gómez Ortega, Centro de Ingeniería y Desarrollo Industrial (CIDESI)
Dr., CIDESI - CONMAD, Ingeniería de Superficies y Manufactura Aditiva.
Guillermo Mondragón Rodríguez, Centro de Ingeniería y Desarrollo Industrial (CIDESI)
Dr., CIDESI - CONMAD, Ingeniería de Superficies y Manufactura Aditiva.
Juan Manuel Alvarado Orozco, Centro de Ingeniería y Desarrollo Industrial (CIDESI)
Dr., CIDESI - CONMAD, Ingeniería de Superficies y Manufactura Aditiva.
Nayeli Camacho, Centro de Ingeniería y Desarrollo Industrial (CIDESI)
Doctora, CIDESI - CENTA, Centro Nacional de Tecnologías Aeronáuticas.

Citas

R. Vaishya and H. Lal, “Challenges, controversies, and innovations in arthroplasty,” J Clin Orthop Trauma, vol. 9, no. 1, pp. 1–2, Jan. 2018.

“Website.” “Global RA Network » About Arthritis and RA.” https://globalranetwork.org/project/disease-info/#:~:text=Approximately%2C%20one%20per%20cent%20of,million%20people%20live%20with%20RA. (accessed Sep. 30, 2020).

http://www.imss.gob.mx/sites/all/statics/guiasclinicas/435GER.pdf (accessed Jul. 31, 2019).

“CIFRAS EN MÉXICO.” https://amepar.org.mx/cifras-en-mexico/ (accessed Jul. 31, 2019).

http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/435_GPC_Artroplastiaderodilla/435GER.pdf (accessed Jul. 31, 2019).

http://www.larkinhospital.com/larkinorthopedics/wp-content/uploads/2014/01/Artroplastia-Total-de-Rodilla-20081.pdf (accessed Jul. 31, 2019).

“Total Knee Replacement Statistics 2017: Younger Patients Driving Growth,”Jul. 18, 2018. https://idataresearch.com/total-knee-replacement-statistics-2017-younger-patients-driving-growth/ (accessed Sep. 27,2020).

“Cubos dinámicos.” http://www.dgis.salud.gob.mx/contenidos/basesdedatos/BD_Cubos_gobmx.html (accessed Sep. 30, 2020).

S. Trainor, J. Collins, H. Mulvey, and W. Fitz, “Total Knee Replacement Sizing: Shoe Size Is a Better Predictor for Implant Size than Body Height,” Arch Bone Jt Surg, vol. 6, no. 2, pp. 100–104, Mar. 2018.

B. Ravi, R. Croxford, W. M. Reichmann, E. Losina, J. N. Katz, and G. A. Hawker, “The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007,” Best Practice & Research Clinical Rheumatology, vol. 26, no. 5. pp. 637–647, 2012, doi: 10.1016/j.berh.2012.07.014.

S. M. Kurtz et al., “International survey of primary and revision total knee replacement,” Int. Orthop., vol. 35, no. 12, pp. 1783–1789, Dec. 2011.

J. Baena, J. Wu, and Z. Peng, “Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review,” Lubricants, vol. 3, no. 2. pp. 413–436, 2015, doi: 10.3390/lubricants3020413.

A. M. Kandahari, X. Yang, K. A. Laroche, A. S. Dighe, D. Pan, and Q. Cui, “A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response,” Bone Research, vol. 4, no. 1. 2016, doi: 10.1038/boneres.2016.14.

M. Nine, D. Choudhury, A. Hee, R. Mootanah, and N. Osman, “Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints,” Materials, vol. 7, no. 2. pp. 980–1016, 2014, doi: 10.3390/ma7020980.

M. C. S. Inacio, E. W. Paxton, S. E. Graves, R. S. Namba, and S. Nemes, “Projected increase in total knee arthroplasty in the United States –an alternative projection model,” Osteoarthritis and Cartilage, vol. 25, no. 11. pp. 1797–1803, 2017, doi: 10.1016/j.joca.2017.07.022.

L. Leitner et al., “Trends and Economic Impact of Hip and Knee Arthroplasty in Central Europe: Findings from the Austrian National Database,” Sci. Rep., vol. 8, no. 1, p. 4707, Mar. 2018.

F. Xie et al., “Evaluation of health outcomes in osteoarthritis patients after total knee replacement: a two-year follow-up,” Health and Quality of Life Outcomes, vol. 8, no. 1. p. 87, 2010, doi: 10.1186/1477-7525-8-87.

J. T. Evans, R. W. Walker, J. P. Evans, A. W. Blom, A. Sayers, and M. R. Whitehouse, “How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up,” Lancet, vol. 393, no. 10172, pp. 655–663, Feb. 2019.

“Artificial Joint Replacement of the Knee | eOrthopod.com,” eOrthopod.com, Jul. 08, 2015. https://eorthopod.com/artificial-joint-replacement-of-the-knee/ (accessed Jul. 31, 2019).

“Reemplazo Total de Articulación de Rodilla.” https://www.laorthocenter.com/espanol/education.stryker_brochures.spanish.total_knee.3.php (accessed Oct. 01, 2020).

“Reemplazo Total de Rodilla.” http://www.caderayrodilla.com.ar/reemplazorodilla.htm (accessed Oct. 01, 2020).

“Website.”A. A. o. H. a. K. Surgeon, «Hip and Knee Care Library,» American Association of Hip and Knee Surgeon, 2018. [En línea]. Available: https://hipknee.aahks.org/what-are-hip-and-knee-replacement-implants-made-of/. [Último acceso: 17 01 2019]. (accessed Jul. 31, 2019).

“JOURNEY II XR Bi-Cruciate Retaining Knee System.” https://www.smith-nephew.com/professional/products/orthopaedic-reconstruction/knee-reconstruction/partial-and-total-knee/total-knee-replacement-portfolio/journey-ii-xr/ (accessed Nov. 09, 2020).

B. Davies, K. L. Fan, R. D. Hibberd, M. Jakopec, and S. J. Harris, “A mechatronic based robotic system for knee surgery,” Proceedings Intelligent Information Systems. IIS’97. doi: 10.1109/iis.1997.645177.

W. M. Mihalko, “Additive Manufacturing of Arthroplasty Implants,” 3D Printing in Orthopaedic Surgery. pp. 49–53, 2019, doi: 10.1016/b978-0-323-58118-9.00005-1.

S. P. Narra, P. N. Mittwede, S. DeVincent Wolf, and K. L. Urish, “Additive Manufacturing in Total Joint Arthroplasty,” Orthop. Clin. North Am., vol. 50, no. 1, pp. 13–20, Jan. 2019.

W. Fitz, “Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs,” J. Bone Joint Surg. Am., vol. 91 Suppl 1, pp. 69–76, Feb. 2009.

P. Jemmettand S. Roy, “The iDuo Bi-compartmental Knee Replacement: Our Early Experience,” Reconstructive Review, vol. 6, no. 4. 2016, doi: 10.15438/rr.6.4.149.

M. Roche, K. A. Gustke, and T. Y. Law, “The utilization of smart trials in PCLretaining knees,” Seminars in Arthroplasty, vol. 26, no. 4. pp. 218–228, 2015, doi: 10.1053/j.sart.2016.06.004.

R. L. Barrack, T. Schrader, A. J. Bertot, M. W. Wolfe, and L. Myers, “Component rotation and anterior knee pain after total knee arthroplasty,” Clin. Orthop. Relat. Res., no. 392, pp. 46–55, Nov. 2001.

W. C. Schroer et al., “Why are total knees failing today? Etiology of total knee revision in 2010 and 2011,” J. Arthroplasty, vol. 28, no. 8 Suppl, pp. 116–119, Sep. 2013.

A. Postler, C. Lützner, F. Beyer, E. Tille, and J. Lützner, “Analysis of Total Knee Arthroplasty revision causes,” BMC Musculoskeletal Disorders, vol. 19, no. 1. 2018, doi: 10.1186/s12891-018-1977-y.

D. A. Camarata, “Soft tissue balance in total knee arthroplasty with a force sensor,” Orthop. Clin. North Am., vol. 45, no. 2, pp. 175–184, Apr. 2014.

“Website.” Gustke K. Use of smart trials for soft-tissue balancing in total knee replacement surgery. J Bone Joint Surg Br 2012; 94(11 Suppl A):147-50 (15) (PDF) Smart Sensor Technology to determine Soft-tissue Balance in Total Knee Arthroplasty. Available from: https://www.researchgate.net/publication/264979161_Smart_Sensor_Technology_to_determine_Soft-tissue_Balance_in_Total_Knee_Arthroplasty [accessed Sep 11 2020]. (accessed Sep. 11, 2020).

“Total Hip Replacement -OrthoInfo -AAOS.” https://www.orthoinfo.org/en/treatment/total-hip-replacement/ (accessed Sep. 30, 2020).

S. R. Knight, R. Aujla, and S. P. Biswas, “TotalHip Arthroplasty -over 100 years of operative history,” Orthop. Rev. , vol. 3, no. 2, p. e16, Sep. 2011.

A. Aherwar, A. K Singh, A. Patnaik, and Department of Mechanical Engineering, Malaviya National Institute of Technology, Malaviya Nagar, JLN Marg, Jaipur, Rajasthan-302017, India, “Current and future biocompatibility aspects of biomaterials for hip prosthesis,” AIMS Bioengineering, vol. 3, no. 1, pp. 23–43, 2015.

T.-K. Jung, H.-S. Lee, S. Semboshi, N. Masahashi, T. Abumiya, and S. Hanada, “A new concept of hip joint stem and its fabrication using metastable TiNbSn alloy,” Journal of Alloys and Compounds, vol. 536. pp. S582–S585, 2012, doi: 10.1016/j.jallcom.2011.12.077.

“Website.” Conformis, «Conformis,» Conformis, 2019. [En línea]. Available: https://www.conformis.com/custom-made-knee-implants/. (accessed Jul. 31, 2019).

M. Merola and S. Affatato, “Materials for Hip Prostheses: A Review of Wear and Loading Considerations,” Materials , vol. 12, no. 3, Feb. 2019, doi: 10.3390/ma12030495.

Z. You and D. Li, “The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites,” Materials Letters, vol. 112. pp. 197–199, 2013, doi: 10.1016/j.matlet.2013.09.013.

S. Affatato, A. Ruggiero, and M. Merola, “Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings,” Composites Part B: Engineering, vol. 83. pp. 276–283, 2015, doi: 10.1016/j.compositesb.2015.07.019.

E. M. B. del Prever, E. M. B. del Prever, A. Bistolfi, P. Bracco, and L. Costa, “UHMWPE for arthroplasty: past or future,” Journal of Orthopaedics and Traumatology, vol. 10, no. 1. pp. 1–8, 2009, doi: 10.1007/s10195-008-0038-y.

J. S. Bergström, C. M. Rimnac, and S. M. Kurtz, “Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model,” Biomaterials, vol. 24, no. 8, pp. 1365–1380, Apr. 2003.

R. Lerf, D. Zurbrügg, and D. Delfosse, “Use of vitamin E to protect cross-linked UHMWPE from oxidation,” Biomaterials,vol. 31, no. 13, pp. 3643–3648, May 2010.

E. Oral, C. Godleski Beckos, A. S. Malhi, and O. K. Muratoglu, “The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahighmolecular weight polyethylene,” Biomaterials, vol. 29, no. 26, pp. 3557–3560, Sep. 2008.

E. Oral, A. Neils, and O. K. Muratoglu, “High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 103, no. 4. pp. 790–797, 2015, doi: 10.1002/jbm.b.33256.

https://www.cortical.com.br/catalogos/7afd4b11fe4d5e372704e41398a9df13.pdf (accessed Nov. 08, 2020).

https://www.ceramtec.com/files/mt_biolox_forte_delta_comparison_en.pdf (accessed Nov. 08, 2020).

C. Piconi and A. A. Porporati, “Bioinert Ceramics: Zirconia and Alumina,” Handbook of Bioceramics and Biocomposites. pp. 1–25, 2015, doi: 10.1007/978-3-319-09230-0_4-1.

I. C. Clarke, D. D. Green, G. Pezzoti, and D. Donaldson, “20 Year Experience of Zirconia Total Hip Replacements,” Ceramics in Orthopaedics. pp. 67–78, doi: 10.1007/3-7985-1540-9_12.

S. Deville et al., “Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants,” J. Eur. Ceram. Soc., vol. 23, no. 15, pp. 2975–2982, Jan. 2003.

M. D. Kohn, A. A. Sassoon, and N. D. Fernando, “Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis,” Clinical Orthopaedics and Related Research®, vol. 474, no. 8. pp. 1886–1893, 2016, doi: 10.1007/s11999-016-4732-4.

S. de Salud, “Osteosarcoma, cáncer más frecuente en niños y adolescentes.” http://www.gob.mx/salud/prensa/osteosarcoma-cancer-mas-frecuente-en-ninos-y-adolescentes (accessed Sep. 28, 2020).

N. D. Heckmann, L. Sivasundaram, M. D. Stefl, H. P. Kang, E. T. Basler, and J. R. Lieberman, “Total Hip Arthroplasty Bearing Surface Trends in the United States From 2007 to 2014: The Rise of Ceramic on Polyethylene,” The Journal of Arthroplasty, vol. 33, no. 6. pp. 1757–1763.e1, 2018, doi: 10.1016/j.arth.2017.12.040.

C. Rivière, C. Harman, T. Parsons, L. Villet, J. Cobb, and C. Maillot, “Kinematic alignment versus conventional techniques for total hip arthroplasty: A retrospective case control study,” Orthop. Traumatol. Surg. Res., vol. 105, no. 5, pp. 895–905, Sep. 2019.

D. H. Sochart and M. L. Porter, “The long-term results of Charnley low-friction arthroplasty in young patients who have congenital dislocation, degenerative osteoarthrosis, or rheumatoid arthritis,” J. Bone Joint Surg. Am., vol. 79, no. 11, pp.1599–1617, Nov. 1997.

W. Y. Shon, B.-Y. Park, R. N. R, P. S. Park, J. T. Im, and H. H. Yun, “Total Hip Arthroplasty: Past, Present, and Future. What Has Been Achieved?,” Hip Pelvis, vol. 31, no. 4, pp. 179–189, Dec. 2019.

W. Y. Shon, T. Baldini, M. G. Peterson, T. M. Wright, andE. A. Salvati, “Impingement in total hip arthroplasty a study of retrieved acetabular components,” J. Arthroplasty, vol. 20, no. 4, pp. 427–435, Jun. 2005.

I. D. Learmonth, C. Young, and C. Rorabeck, “The operation of the century: total hip replacement,” The Lancet, vol. 370, no. 9597. pp. 1508–1519, 2007, doi: 10.1016/s0140-6736(07)60457-7.

https://cdigital.uv.mx/bitstream/handle/1944/49969/FernandezArteagaAngel.pdf?sequence=1&isAllowed=y(accessed Nov. 08, 2020).

https://www.medigraphic.com/pdfs/inge/ib-2001/ib012d.pdf (accessed Nov. 08, 2020).

I.-G. Kang, C.-I. Park, H. Lee, H.-E. Kim, and S.-M. Lee, “Hydroxyapatite Microspheres as an Additive to Enhance Radiopacity, Biocompatibility, and Osteoconductivity of Poly(methyl methacrylate) Bone Cement,” Materials , vol. 11, no. 2, Feb. 2018, doi: 10.3390/ma11020258.

L. Shi et al., “The improved biological performance of a novel low elastic modulus implant,” PLoS One, vol. 8, no. 2, p. e55015, Feb. 2013.

M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li, “Biomedical titanium alloys with Young’s moduli close to that of cortical bone,” Regenerative Biomaterials, vol. 3, no. 3. pp. 173–185, 2016, doi: 10.1093/rb/rbw016.

M. T. Mohammed, “Mechanical Properties of SLM-Titanium Materials for Biomedical Applications: A Review,” Materials Today: Proceedings, vol. 5, no. 9. pp. 17906–17913, 2018, doi: 10.1016/j.matpr.2018.06.119.

T. Kunii et al., “Improved Osseointegration of a TiNbSn Alloy with a Low Young’s Modulus Treated with Anodic Oxidation,” Scientific Reports, vol. 9, no. 1. 2019, doi: 10.1038/s41598-019-50581-7.

H. Matsumoto, S. Watanabe, and S. Hanada, “Microstructures and mechanical properties of metastable βTiNbSnalloys cold rolled and heat treated,” Journal of Alloys and Compounds, vol. 439, no. 1–2. pp. 146–155, 2007, doi: 10.1016/j.jallcom.2006.08.267.

Q. Guo, Y. Zhan, H. Mo, and G. Zhang, “Aging response of the Ti–Nb systembiomaterials with β-stabilizing elements,” Materials & Design, vol. 31, no. 10. pp. 4842–4846, 2010, doi: 10.1016/j.matdes.2010.05.047.

Oh, S. T., Woo, K. D., Kim, J. H., & Kwak, S. M., “The Effect of Al and V on Microstructure and Transformation of βPhase during Solution Treatments of Cast Ti-6Al-4V Alloy,” J. Korean Inst. Met. Mater., vol. 55, no. 3, pp. 150–155, Mar. 2017.

L. Zhang and L. Chen, “A Review on Biomedical Titanium Alloys: Recent Progress and Prospect,” Advanced Engineering Materials, vol. 21, no. 4. p. 1801215, 2019, doi: 10.1002/adem.201801215.

G. A. Clavijo-Mejía, J. A. Hermann-Muñoz, J. A. Rincón-López, H. Ageorges, and J. Muñoz-Saldaña, “Bovine-derived hydroxyapatite coatings deposited by high-velocity oxygen-fuel and atmospheric plasma spray processes: A comparative study,” Surface and Coatings Technology, vol. 381. p. 125193, 2020, doi: 10.1016/j.surfcoat.2019.125193.

J. A. Hermann-Muñoz et al., “Influence of HVOF parameters on HAp coating generation: An integrated approach using process maps,” Surface and Coatings Technology, vol. 358. pp. 299–307, 2019, doi: 10.1016/j.surfcoat.2018.11.029.

J. Henao et al., “HVOF Hydroxyapatite/Titania-Graded Coatings: Microstructural, Mechanical, and In Vitro Characterization,” Journal of Thermal Spray Technology, vol. 27, no. 8. pp. 1302–1321, 2018, doi: 10.1007/s11666-018-0811-2.

S. F. E, F. E. S., L. Shi, Z. G. Guo, and W. M. Liu, “The recent progress of tribological biomaterials,” Biosurface and Biotribology, vol. 1, no. 2. pp. 81–97, 2015, doi: 10.1016/j.bsbt.2015.06.002.

C. Fabry, C. Zietz, R. Dammer, and R. Bader, “12 Patterns of Wear in Total Knee Replacement,” The Unhappy Total Knee Replacement. pp. 135–145, 2015, doi: 10.1007/978-3-319-08099-4_13.

https://pdfs.semanticscholar.org/cc0e/7ae4c4f6022ef1011014b4d9740e802fb8c3.pdf (accessed May 20, 2020).

G. W. Stachowiak, “Friction and Wear of Polymers, Ceramics and Composites in Biomedical Applications,” Advances in Composite Tribology. pp. 509–557, 1993, doi: 10.1016/b978-0-444-89079-5.50018-0.

N. Camacho, E. A. Franco-Urquiza, and S. W. Stafford, “Wear performance of multiwalled carbon nanotube-reinforced ultra-high molecular weight polyethylene composite,” Advances in Polymer Technology, vol. 37, no. 6. pp. 2261–2269, 2018, doi: 10.1002/adv.21885.

A. Bhattacharyya, S. Chen, and M. Zhu, “Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties,” Express Polymer Letters, vol. 8, no. 2. pp. 74–84, 2014, doi: 10.3144/expresspolymlett.2014.10.

N. Dalai and P. S. Rama Sreekanth, “Mechanical properties of graphene and nano-diamond reinforced ultra high molecular weight polyethylene,” Materials Today: Proceedings, vol. 27. pp. 1013–1016, 2020, doi: 10.1016/j.matpr.2020.01.350.

B. P. Chang, H. M. Akil, R. B. Nasir, and A. Khan, “Optimization on wear performance of UHMWPE composites using response surface methodology,” Tribology International, vol. 88. pp. 252–262, 2015, doi: 10.1016/j.triboint.2015.03.028.

T. Liu, A. Eyler, and W.-H. Zhong, “Simultaneous improvements in wear resistance and mechanical properties of UHMWPE nanocomposite fabricated via a facile approach,” Materials Letters, vol. 177. pp. 17–20, 2016, doi: 10.1016/j.matlet.2016.04.072.

D. Lahiri, F. Hec, M. Thiesse, A. Durygin, C. Zhang, and A. Agarwal, “Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites,” Tribology International, vol. 70. pp. 165–169, 2014, doi: 10.1016/j.triboint.2013.10.012.

N. T. Dintcheva et al., “Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites,” Composites Part B: Engineering, vol. 82. pp. 196–204, 2015, doi: 10.1016/j.compositesb.2015.07.017.

M. J. Martínez-Morlanes, P. Castell, P. J. Alonso, M. T. Martinez, and J. A. Puértolas, “Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites,” Carbon, vol. 50, no. 7. pp. 2442–2452, 2012, doi: 10.1016/j.carbon.2012.01.066.

M. J. Martínez-Morlanes, P. Castell, V. Martínez-Nogués, M. T. Martinez, P. J. Alonso, and J. A. Puértolas, “Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites,” Composites Science and Technology, vol. 71, no. 3. pp. 282–288, 2011, doi: 10.1016/j.compscitech.2010.11.013.

Y. Xue, W. Wu, O. Jacobs, and B. Schädel, “Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes,” Polymer Testing, vol. 25, no. 2. pp. 221–229, 2006, doi: 10.1016/j.polymertesting.2005.10.005.

P. S. R. Sreekanth, P. S. Rama Sreekanth, and S. Kanagaraj, “Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE,” Wear, vol. 334–335. pp. 82–90, 2015, doi: 10.1016/j.wear.2014.12.014.

A. Fonseca, S. Kanagaraj, M. S. A. Oliveira, and J. A. O. Simões, “Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Milling,” Defect and Diffusion Forum, vol. 312–315. pp. 1238–1243, 2011, doi: 10.4028/www.scientific.net/ddf.312-315.1238.

P. S. Rama Sreekanth and S. Kanagaraj, “Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using Nanoindentation and microtensile testing,” J. Mech. Behav. Biomed. Mater., vol. 18, pp. 140–151, Feb. 2013.

N. Camacho, J. D. Escobedo-Rodríguez, J. M. Alvarado-Orozco, and G. C. Mondragón-Rodríguez, “Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High-Molecular-Weight Polyethylene,” Sep. 22, 2020.

M. Masini, A. Levine, and A. Cruz, “Radiographic and Clinical Outcomes in Total Hip Arthroplasty Utilizing a Porous Acetabular Shell Developed with Additive Manufacturing.” doi: 10.29007/bhs9.

Wohlers Report 2018: Additive Manufacturing and 3DPrinting State of the Industry: Annual Worldwide Progress Report. 2018.

Center for Devices and Radiological Health, “Technical Considerations for Additive Manufactured Medical Devices,” Feb. 03, 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices (accessed Sep. 11, 2020).

A. Nazir, K. M. Abate, A. Kumar, and J.-Y. Jeng, “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures,” The International Journal of Advanced Manufacturing Technology, vol. 104, no. 9–12. pp. 3489–3510, 2019, doi: 10.1007/s00170-019-04085-3.

C.-C. Huang et al., “Novel design of additive manufactured hollow porous implants,” Dent. Mater., Sep. 2020, doi: 10.1016/j.dental.2020.08.011.

H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, and M. S. Dargusch, “Additivemanufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development,” Journal of Alloys and Compounds, vol. 827. p. 154263, 2020, doi: 10.1016/j.jallcom.2020.154263.

L. Yuan, S. Ding, and C. Wen, “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review,” Bioactive Materials, vol. 4. pp. 56–70, 2019, doi: 10.1016/j.bioactmat.2018.12.003.

Publicado
2021-01-29
Cómo citar
Gómez OrtegaA., Mondragón RodríguezG., Alvarado OrozcoJ. M., & CamachoN. (2021). Retos actuales y futuros en implantes de rodilla y cadera. Revista Colombiana De Materiales, (16), 29-56. https://doi.org/10.17533/udea.rcm.n16a02
Sección
Artículos