PLATAFORMAS DE HIDROXIAPATITA PARA INGENIERÍA DE TEJIDOS FABRICADAS POR LA TÉCNICA DE GEL-CASTING COMBINADA CON INFILTRACIÓN DE ESPUMAS POLIMÉRICAS
DOI:
https://doi.org/10.17533/udea.rcm.19332Keywords:
Gel-casting, Hydroxyapatite, Polymer sponge methods, ScaffoldAbstract
Hydroxyapatite is a ceramic enabling of fixing bioactive, cells invasion and nutrients, which promote tissue regeneration. In these work, dimensional hydroxyapatite stage using gel-casting technique combined with infiltration of polymer foams, with a percent solids of 40% and three different monomers were prepared. The stages surface morphology and the pore size were characterized by scanning electron microscopy (SEM), porosity and interconnectivity was determined by immersion tests and mechanical compression tests were performed. The results obtained show that the stages have opened and interconnected porosity with a pore size of approximately 300 microns and low mechanical strength of 0.1 MPa as compared with that of human trabecular bone.
Downloads
References
Black, J., Hastings, G., “Handbook of Biomaterials Properties, ” Londres, Chapman & Hall, 1998. DOI: https://doi.org/10.1007/978-1-4615-5801-9
Sepulveda, P., Binner. J.G., Rogero, S.O., Higa, O.Z., Bressiani, J.C., “Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation,” Journal of biomedical materials research, Vol. 50, No. 1, pp. 27–34, 2000. DOI: https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<27::AID-JBM5>3.0.CO;2-6
Chen, G., Ushida, T. and Tateishi,T., “Development of biodegradable porous scaffolds for tissue engineering,” Materials Science and Engineering: C, Vol. 17, No. 1–2, pp. 63–69, 2001. DOI: https://doi.org/10.1016/S0928-4931(01)00338-1
Saiz, E., Gremillard, L., Menendez, G., Miranda, P., Gryn, K., Tomsia , P., “Preparation of porous hydroxyapatite scaffolds,” Materials Science and Engineering: C, Vol. 27, No. 3, pp. 546–550, 2007. DOI: https://doi.org/10.1016/j.msec.2006.05.038
Teixeira, S., Rodriguez, M., Pena, P., De Aza, H., Ferraz, P., Monteiro, F. J., “Physical characterization of hydroxyapatite porous scaffolds for tissue engineering,” Materials Science and Engineering: C, Vol. 29, No. 5, pp. 1510–1514, 2009. DOI: https://doi.org/10.1016/j.msec.2008.09.052
Liu, J. and Miao, X., “Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads,” Journal of Materials Science, Vol. 40, No. 23, pp. 6145–6150, 2005. DOI: https://doi.org/10.1007/s10853-005-3165-3
Ramay, H.R. and Zhang, M., “Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods,” Biomaterials, Vol. 24, No. 19, pp. 3293–3302, 2003. DOI: https://doi.org/10.1016/S0142-9612(03)00171-6
Montufar, E.B., “Espumas inyectables de hidroxiapatita obtenidas por el método de espumado de la fase líquida de un cemento de fosfato tricálcico alfa,” Universidad Politécnica de Cataluña, 2010.
Cunningham, E., Dunne, N., Walker, G., Maggs, C., Wilcox, R., Buchanan, F., “Hydroxyapatite bone substitutes developed via replication of natural marine sponges.,” Journal of materials science. Materials in medicine, Vol. 21, No. 8, pp. 2255–61, 2010. DOI: https://doi.org/10.1007/s10856-009-3961-4
Navarro, M.E., “Desarrollo y Caracterización de Materiales Biodegradables para Regeneración Ósea,” Universidad Politécnica de Cataluña, 2005.
Tripathi, G. and Basu, B., “A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations,” Ceramics International, Vol. 38, No. 1, pp. 341–349, 2012. DOI: https://doi.org/10.1016/j.ceramint.2011.07.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Revista Colombiana de Materiales

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.