.

Authors

  • Iván Gómez Industrial University of Santander
  • Enrique Mejía Industrial University of Santander
  • Rafael Cabanzo Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.rcm.19449

Keywords:

graphite, graphene oxide, Chemically reduced graphene, Spectroscopic characterization, Scanning electron microscopy

Abstract

In this study, a synthetic route for obtaining graphene oxide (GO) and chemically reduced graphene (CRG) was developed. The overall process involve three general stages: (i) liquid phase oxidation of microcrystals graphite previously modified by exfoliative treatment, (ii) conversion of graphite oxide in graphene oxide nanosheets dispersed in aqueous medium by ultrasound application and, (iii) chemical reduction of graphene oxide in solution to convert it in graphene, using hydroxylamine as reducing agent. Results observed through spectroscopic techniques (X-ray diffraction, UV-Vis and infrared spectroscopies, dynamic light scattering) and scanning electron microscopy, allowed the identification of the synthesized materials and know some basic aspects of its structures. The synthesis procedure proved to be simple, efficient and cost-effective, which may be considered an important route to produce bulk scale graphene oxide and chemically reduced graphene nanosheets.
|Abstract
= 313 veces | PDF (ESPAÑOL (ESPAÑA))
= 266 veces|

Downloads

Author Biographies

Iván Gómez, Industrial University of Santander

PhD chemical student, Universidad Industrial de Santander, Bucaramanga, Colombia

Enrique Mejía, Industrial University of Santander

PhD chemist, Industrial University of Santander

Rafael Cabanzo, Industrial University of Santander

PhD physicist, Universidad Industrial de Santander

References

K. Novoselov; A. Geim. “The rise of grapheme”. Nature materials, 2007, 6, pp 183-191.

K. Novoselov; A. Geim; S. Morozov; D. Jiang; Y. Zhang; S. Dubonos; I. Grigorieva; A. Firsov. “Electric Field Effect in Atomically Thin Carbon Films”. Science, 2004, 306, pp 666-669.

W. Choi; J. Lee. Graphene: Synthesis and Applications. CRC Press Book, Nanomaterials and their applications, 2011, pp 1-25.

V. Singh; D. Joung; L. Zhai; S. Das; S. Khondaker; S. Seal. Graphene based materials: Past, present and future. Elsevier, Progress in Materials Science, 2011, 56, pp 1178–1271.

Y. Zhu; S. Murali; W. Cai; X. Li; J. Won; J. Potts; R. Ruoff. “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”. Adv. Mater, 2010, 22, pp 3906–3924.

X. J. Wan; Y. Huang; Y. Chen. “Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale”. ACS, Accounts of Chemical Research, 2011, 30 (20), pp A-J.

D. Dreyer; S. Park; C. Bielawsky; R. Ruoff. “The chemistry of graphene oxide”. Chem. Soc. Rev., 2010, 39, pp 228-240.

Y. Geng; S. Wang; J. Kim. “Preparation of graphite nanoplatelets and graphene sheets. Elsevier”, Journal of Colloid and Interface Science, 2009, 336, pp 592–598.

D. Marcano; D. Kosynkin; J. Berlin; A. Sinitskii; Z. Sun; A. Slesarev; L. Alemany; W. Lu; J. Tour. “Improved Synthesis of Graphene Oxide”.ACS Nano, 2010, 4(8), pp 4806-4814.

Y. Si; E. Samulski. “Synthesis of Water Soluble Graphene”. ACS, Nano Letters, 2008, 8 (6), pp 1679-1682.

G. Wang; J. Yang; J. Park; X. Gou; B. Wang; H. Liu; J. Yao. “Facile Synthesis and Characterization of Graphene Nanosheets”.J. Phys. Chem., 2008, 112, pp 8192–8195.

S. Stankovich; D. Dikin; R. Piner; K. Kohlhaas; A. Kleinhammes; Y. Jia; Yue. Wu; S. Nguyen; R. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Elsevier, Carbon, 2007, 45, pp 1558-1565.

S. Park; J. An; J. Potts; A. Velamakanni; S. Murali; R. Ruoff. Hydrazine-reduction of graphite-and graphene oxide. Elsevier, Carbon, 2011, 49, pp 3019-3023.

Published

2014-05-19

How to Cite

Gómez, I., Mejía, E., & Cabanzo, R. (2014). Revista Colombiana De Materiales, (5), 177–184. https://doi.org/10.17533/udea.rcm.19449

Most read articles by the same author(s)