.

Authors

  • Liz Solange Correa Universidad del Valle
  • Fabio Zuluaga Universidad del Valle
  • Carlos Valencia Universidad del Valle
  • Jorge Eduardo Godoy Universidad del Valle

DOI:

https://doi.org/10.17533/udea.rcm.22873

Keywords:

Chitosan, Poly (L-lactide), in vivo test, Aspergillus níger, Porous Scaffolds

Abstract

In this work the extraction of chitosan (CHT) was made from the fungus Aspergillus niger whose yield was 0.6% on dry initial amount. The CHT was characterized by infrared spectroscopy (FT-IR) and NMR-1H) Nuclear Magnetic Resonance. Its molecular weight (200,605 g / mol), was determined by capillary viscosimetry and its degree of deacetylation (68.51%) was determined by elemental analysis techniques and potentiometric titration. Scaffolds of poly (L-lactide) (PLLA)/CHT were prepared by depositing CHT through the pores of the PLLA scaffolds, previously created by the melt molding technique. Morphology and pore architecture of these scaffolds were evaluated by Scanning Electron Microscopy (SEM) and found the existence of CHT within the pores by fluorescence spectroscopy technique. These material were tested for compression and hydrolytic degradation porosity in order to simulate their behavior within the organism by in vivo assays. These in vivo in rabbits tests showed that the porous blocks of PLLA/CHT implanted into critical size effects in rabbits showed adequate biointegration, showing scar bone regeneration process.
|Abstract
= 296 veces | PDF (ESPAÑOL (ESPAÑA))
= 621 veces|

Downloads

Download data is not yet available.

Author Biographies

Liz Solange Correa, Universidad del Valle

Master's Student, School of Materials Engineering, Universidad del Valle, Cali, Colombia

Fabio Zuluaga, Universidad del Valle

Professor, Department of Chemistry, Universidad del Valle, Cali, Colombia

Carlos Valencia, Universidad del Valle

PhD Student, School of Dentistry, Universidad del Valle, Cali, Colombia

Jorge Eduardo Godoy, Universidad del Valle

Master's Student, School of Materials Engineering, Universidad del Valle, Cali, Colombia

References

Rahul M. Rasala.B., “Poly (lactic acid) modifications Progress”, Polymer Science, Vol. 35, 2010, pp. 338–356.

Zhou, H, “Fabrication Aspects of PLA-CaP/PLGA/CaP composites for orthopedic applications”, Acta biomaterialia, Vol. 8, 2012, pp. 1999-2016.

Madihally, H.W. Matthew.T.,”Porous Chitosan Scaffolds for Tissue Engineering”, Biomaterials, Vol. 20, 1998, pp. 5983, 1133.

Mano, J. F. Hungerford, G. Gomez, J.L., “Bioactive Poly (L-Lactic Acid)-Chitosan Hybrid Scaffolds”, Materials Science and Engineering, Vol. 28, No. 8 2008, pp. 1356-1365.

Zuluaga, H.F. Insuasty, B. & Yates, B, Análisis Orgánico Clásico y Espectral, Editorial: Artes Gráficas, Cali. pp. 97-180, ISBN: 958-670-167-0

Cai J. Yang J. Du Y. Fan L & Qiu Y, “Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant”, Carbohydrate Polymers, Vol. 64, 2006, pp. 152–156. [

Hidalgo, C, Suarez, Y & Fernandez, M., “Validación de una técnica potenciométrica para determinar el grado de desacetilación del Quitosano” Ars Pharm, Vol. 49, 2008, pp. 246-247.

“Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers”, American Standard Testing Methods, ASTM (D 446-00), No. 12, 1995.

Lanza, H., “Principles of tissue Engineering”, Elsevier, Vol. 3, 2007, pp. 309-312.

“Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers”, American Standard Testing Methods, ASTM (D 1621-04), 2004, pp. 1-5.

Vieira E. Oliveira I. Bruns R. & Cestari A. “The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan” Journal of hazardous material. Vol.143, 2007, pp. 12-16.

Goldstein, J., “Scanning electron microscopy and x-ray microanalysis”, Kluwer Academic/Plenum Pulbishers, Vol. 140, No. 06 2003, pp 689.

“In vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implant”, American Standard Testing Methods, ASTM (F1635-04a), 2004.

Balanta, D.J. “Extracción, Identificación y Caracterización de Quitosano del Micelio de Aspergillus Niger y sus Aplicaciones como Material Bioadsorbente en el Tratamiento de Aguas”, Tesis de pregrado, Cali, Universidad del Valle, 2009.

Kong,L & Gao,Y, “A Study On the Bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering”, European Polymer Journal, Vol. 42, 2006, pp. 3171-3179.

Brandrup J. & Immergut E. (1998). Polymer Handbook. Wiley Interscience. New York.

Parada, L.G. Crespin D.G. Miranda R. & Katime, I., “Caracterización de Quitosano por Viscosimetria Capilar y Valoración Potenciométrica”, Revista iberoamericana de polímeros, Vol. 20, 2004, pp.13-15.

Crini G; Badot P., “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature”, Prog. Polym. Sci, Vol. 33, 2008, pp.415-416.

Gomez, J.F., “Síntesis y Caracterización de un polímero biodegradable a partir de ácido Láctico y ácido cítrico”, Cali, Universidad del Valle, 2008.

Boxum, Z. Yongliang, G., “Osteogenesis Mechanism of Chitosan-Coated Calcium Sultate pellets on the restoration of segmental bone defects”, The journal of Craniofacial Surger, Vol. 5, 2009.

Published

2015-05-27

How to Cite

Correa, L. S., Zuluaga, F., Valencia, C., & Godoy, J. E. (2015). Revista Colombiana De Materiales, (6), 34–53. https://doi.org/10.17533/udea.rcm.22873

Issue

Section

Artículos