Influence of carbon, titanium and aluminium in the high temperature corrosion resistance by molten salts in nickel-chromium-iron alloys
DOI:
https://doi.org/10.17533/udea.rcm.326492Keywords:
nickel-chromium-iron alloys, high temperature corrosion, molten saltsAbstract
The corrosion resistance generated by molten salts at high temperature in nickel-iron-chromium alloys was studied. Alloys with different concentrations of carbon and aluminum plus titanium were produced and the chemical composition of the samples was determined by optical emission spectrometry. Samples were cold rolled with a cross and unidirectional rolling deformation of 15%, after that a heat treatment was performed to get the desired microstructure. SEM and optical microscopy were used to analyze the microstructure and determining the grain size. EDS analysis was used for determining the chemistry of inter- and intra-granular precipitates. Finally, a high temperature corrosion process was carried out using vanadium pentoxide molten salts. SEM was used to analyze the type of corrosion. A high resistance to hot corrosion was found for this alloy system and a direct relationship between carbon concentration and corrosion rate. No significant influence of the concentration of aluminum and titanium on the corrosion rate was observed.
Downloads
References
Lai, G. Y., “Molten salt corrosion,” In: High Temperature Corrosion and Materials Applications, G. Y. Lai, 1st ed., ch. 15, ASM International, USA, 2003.
Special Metals Corporation, HIGH-PERFORMANCE ALLOYS FOR RESISTANCE TO AQUEOUS CORROSION, [Online] Available: http://www.specialmetals.com/assets/documents/sm-aqueous-corrosion-book.pdf [Accessed: 25-May-2015].
Davis, J., “Properties of nonferrous heat-resistant materials,” In: ASM Specialty Handbook: Heat-Resistant Materials, J. Davis, 1st ed., ch. 4, ASM International, USA, 1997.
Peña, D. Y., Anaya, H. A., Tristancho, J. L., “Evaluación de la corrosión en caliente por métodos electroquímicos de un acero AISI 304H en presencia del óxido de níquel como inhibidor”, Scientia et Technica, vol. 36, pp. 129–134, 2007.
Agüero, A., “Recubrimientos contra la corrosión a alta temperatura para componentes de turbinas de gas”, Revista de Metalurgia, vol. 43, no. 5, pp. 384–398, 2007.
Pettit, F. S., Meier, G. H., “Oxidation and hot corrosion of superalloys”, The Minerals, Metals and Materials Society, vol. 10, pp. 651–687, 1984.
Buschow, K. H. J., Cahn, R. W., Flemings, M. C., et al., “Ni,” In: Encyclopedia of Materials-Science and Technology, vol. 4, Nanocrystalline materials: Magnetism to nucleation of ferrous solid-solid phase transformations at inclusions, Elsevier, pp. 6135–6160, 1983.
Ansara, I., Chart, T. G., Chevalier, P. Y., “Ternary systems,” In: Phase Diagrams for Fe-Cr-Ni Based Alloys, B. J. Monnet. Commission of the European Communities, Luxembourg, 1985.
Special Metals Corporation, INCOLOY ALLOY 800, [Online] Available: http://www.specialmetals.com/assets/documents/alloys/incoloy/incoloy-alloy-800.pdf [Accessed: 25-May-2015].
Cárdenas Fernández, J., Del Castillo Rodríguez, F. D., “Aleaciones base Níquel,” In: Superaleaciones, Laboratorio de Tecnología de Materiales, 23rd ed., ch. 2, Lecturas Para Ingeniería, Cuautitlán Izcalli, México, 2015.
Starr, F., “Advanced materials for advanced heat exchangers,” In: Materials for High Temperature Power Generation and Process Plant Applications, vol. 1, Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining, pp. 79–115, 2000.
Nickel, H., Schubert, F., Schuster, H., “Evaluation of alloys for advanced high-temperature reactor”, Nuclear Engineering and Desing, vol. 78, pp. 251–265, 1984.
Osgerby, S., “Development of De-Alloyed zones during oxidation: Effects on microstructure and spallation behaviour,” In: Quantitative Microscopy of High Temperature Materials, vol. 1, Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining, pp. 435–444, 2001.
Peretti, M. M., Ges, A. M., Versaci, R. A., “Velocidad de crecimiento de la fase gamma prima en aleaciones de base Níquel,” In: Congreso Conamet/Sam, 36109329, Santiago, Chile, 03–05 Nov. 2004.
Belan, J., “Structural analyses of advanced material for aerospace industry”, Materials Science, vol. 14, no. 4, pp. 315–318, 2008.
Betteridge, W., Krefeld, R., Krockel, H., et al., “The influence of microstructure, (y’ and other phases) on the mechanical properties of Alloy 800.,” In: Alloy 800: Proceedings of the Petten International Conference, vol. 1, Structural Properties, North-Holland for the Commission of the European Communities, pp. 77–83, 1978.
Peretti, M., Versaci, R. A., Somoza, A., et al., “Comparación de la fase gamma prima secundaria, en aleaciones de base Níquel, sometidas a diferentes tratamientos térmicos,” In: Jornadas SAM-CONAMET, pp. 381–386, Posadas Misiones, Argentina, 12–14 Sep. 2001.
Jonsta, Z., Jonsta, P., Dobrovska, J., et al., “Effect of heat treatment on the structure of in 713LC,” In: Metal 2010, MSM 6198910013, Rosenau, República Checa, 18–20 May. 2010.
Fulger, M., Mihalache, M., Ohai, D., et al., “Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment”, Journal of Nuclear Materials, vol. 415, no. 2, pp. 147–157, 2011.
Nickchi, T., Alfantazi, A., “Electrochemical corrosion behaviour of Incoloy 800 in sulphate solutions containing hydrogen peroxide”, Corrosion Science, vol. 52, no. 12, pp. 4035–4045, 2010.
El-Awadi, G. A., Abdel-Samad, S., Elshazly, E. S., “Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys”, Applied Surface Science, vol. 378, pp. 224–230, 2016.
Zhang, T., Dong, R., Hu, R., et al., “Hot corrosion characteristics of Ni–20Cr–18W superalloy in molten salt”, Transactions of Nonferrous Metals Society of China, vol. 25, no. 11, pp. 3840–3846, 2015.
ASTM B409-06, “Standard specification for Nickel-Iron-Chromium alloy plat, sheet, and strip,” 2011.
Nejati, M., Rahimipour, M. R., Mobasherpour, I., “Evaluation of hot corrosion behavior of CSZ, CSZ/micro Al2O3 and CSZ/nano Al2O3 plasma sprayed thermal barrier coatings”, Ceramics International, vol. 40, no. 3, pp. 4579–4590, 2014.
Jamali, H., Mozafarinia, R., Shoja-Razavi, R.,et al., “Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate”, Journal of the European Ceramic Society, vol. 34, no. 2, pp. 485–492, 2014.
ASTM G1-03, “Standard practice for preparing, cleaning, and evaluating corrosion test specimens,” 2011.
ASTM E3-11, “Standard guide for preparation of metallographic specimens,” 2011.
Chandler, H., “Iron-base superalloys,” In: Heat Treater’s Guide-Practices and Procedures for Nonferrous Alloys, H. Chandler, 2nd ed., ch. 5, ASM International, 1995.
Zamora Rangel, L., Relación Tratamiento Térmico-Propiedades Mecánicas de una Superaleación Base Níquel, Tesis de M. Sc, Instituto Tecnológico de Morelia, Morelia, México, 1997.
Akhiani, H., Nezakat, M., Sanayei, M., et al., “The effect of thermo-mechanical processing on grain boundary character distribution in Incoloy 800H/HT”, Materials Science and Engineering A, vol. 626, pp. 51–60, 2015.
Akhiani, H., Nezakat, M., Sonboli, A., et al., “The origin of annealing texture in a cold-rolled Incoloy 800H/HT after different strain paths”, Materials Science and Engineering A, vol. 619, pp. 334–344, 2014.
Handa, S. S., Precipitation of Carbides in a Ni-Based Superalloy, Tesis de M. Sc, University West, Trollhattan, Sweden, 2014.
Kim, D. J., Seo, D. Y., Tsang, J., et al., “The crack growth behavior of incoloy 800H under fatigue and dwell-fatigue conditions at elevated temperature”, Journal of Mechanical Science and Technology, vol. 26, no. 7, pp. 2023–2027, 2012.
Cabrera, J. M., Estudio Y Caracterización Del Comportamiento En Caliente Del Inconel 718, Tesis de Ing., Universidad Politécnica de Cataluña, Cataluña, España, 2013.
Gómez, A., Interacción entre la Microestructura Inicial y la Precipitación en la Superaleación Inconel 718, Tesis de Ing., Universidad Politécnica de Catalunya, Barcelona, España, 2014.
Aung, N. N., Zhou, W., “Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy”, Corrosion Science, vol. 52, no. 2, pp. 589–594, 2010.
Meng, G., Li, Y., Shao, Y., et al., “Effect of microstructures on corrosion behavior of Nickel coatings: (i) abnormal grain size effect on corrosion behavior”, Journal of Materials Science and Technology, vol. 31, no. 12, pp. 1186–1192, 2015.