Rotating bending fatigue of a carbo-austempered cast steel
DOI:
https://doi.org/10.17533/udea.rcm.342062Keywords:
carbo-austempering, fatigue, retained austenite, bainitic transformationAbstract
Studies on the use of bainitic microstructures for surface strengthening of steels have been recorded since 2002 [1–3]. Due to the promising properties obtained, combination of high ultimate tensile strength (1.7-2.2 GPa), good ductility (5-30%) and exceptionally high tenacity (45 MPam1/2) [4–7], a wide range of applications is visualized, in operations involving the application of cyclic loads, such as shafts, gears and bearings, among others. From this, the current work aims to study the fatigue behavior of a low carbon cast steel (0.3C-1.9Si-0.5Mn-0.9Cr wt. %), subjected to a carbo-austempered heat treatment. Fatigue tests were carried out under rotating bending conditions on carburized samples up to 0.7 %C on the case and isothermally treated at 250 °C and 300 °C, after which fracture surfaces and microstructural characteristics were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that microstructural parameters such as the volume fraction of the bainitic ferrite, the thickness of the bainitic ferrite plate, the carbon content of the retained austenite and the amount of blocky austenite are important factors controlling the fatigue resistance in this type of materials.
Downloads
References
K. Hayrynen, K. Brandenberg, and J. Keough. “Carbo-Austempering TM - A New Wrinkle? Applied Process Inc. Technologies Div. Livonia, Michigan, USA, 2002.
K. Brandenberg, K. Hayrynen, and J. Keough. “Austempered Gears and Shafts: Tough Solutions”. Applied Process Inc. Technologies Div. Livonia, Michigan, USA, 2002.
J. Lefevre and K. Hayrynen, “Austempering: An Old Process with New Potential for Gears”. Therm. Process., pp. 24–30, 2012.
C. Garcia-Mateo and F. Caballero. “Nanocrystalline Bainitic Steels for Industrial Applications”. Nanoenabled Materials and Coatings for Energy Applications, 2017, pp. 707–724.
C. García-Mateo, T. Sourmai, F. Caballero, V. Smanio, M. Kuntz, C. Ziegler, A. Leiro, E. Vuorinen, R. Elvira and T. Teeri. “Nanostructured steel industrialisation: Plausible reality”. Mater. Sci. Technol., vol. 30, pp. 1071–1078, Jul. 2014.
C. García-Mateo and F. Caballero. “Understanding the mechanical properties of nanostructured bainite”. Handbook of Mechanical Nanostructuring, 2015, pp. 35–65.
L. Morales-Rivas, C. Garcia-Mateo, T. Sourmail, M. Kuntz, R. Rementeria, and F. Caballero. “Ductility of Nanostructured Bainite,” Metals (Basel). vol. 6, no. 12, p. 302, 2016.
ASTM International. “Ensayo de tracción bajo la Norma ASTM E8,” Astm, pp. 46–57, 2011.
Testing of metallic materials - Rotating bar bending fatigue test. DIN 50113. German National Standard. 1982.
Morales-Rivas, L.; Caballero, F.; Garcia-Mateo, C. Encycl. Iron, Steel, Their Alloy., pp. 3077–3087, 2016.
Hofer, C.; Winkelhofer, F.; Clemens, H. Mater. Sci. Eng. A, vol. 664, pp. 236–246, 2016.
Garcia-Mateo, C.; Jimenez, J.; Lopez-Ezquerra, B.; Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; Caballero, F. Mater. Charact., vol. 122, pp. 83–89, 2016.
Yokoi, T.; Kawasaki, K.; Takahashi, M.; Koyama, K. and Mizui, M. “Fatigue properties of high strength steels containing retained austenite”. Technical Notes / JSAE Review 17 (1996) 191-212.
Huo C. and Gao H. Mater. Charact; vol. 55, no. 1, pp. 12–18, 2005.
Peet M.; Hill P.; Rawson M.; Wood S.; and Bhadeshia H. Mater. Sci. Technol., vol. 27, no. 1, pp. 119–123, 2011.
Zhao J.; Honghonh J. and Tiansheng W. “High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel”. Materials (Basel), vol. 11 (1). 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Colombiana de Materiales
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.