FLORY-HUGGINS INTERACTION PARAMETER FOR PVA-WATER IN HYDROGELS PREPARED BY TWO METHODS: FREEZING/THAWING AND CROSSLINKING WITH CITRIC ACID

Authors

  • Carmiña Gartner Vargas Universidad de Antioquia
  • Marta Inés Martínez Parra Universidad de Antioquia
  • Esteban Garzón Montes Universidad de Antioquia
  • Diana Lucía Pérez Jaramillo Universidad de Antioquia

DOI:

https://doi.org/10.17533/RCM/udea.rcm.n19a06

Keywords:

Hydrogels, Polyvinyl alcoho, Freezing/thawing, Citric acid, Flory Huggins interaction paramete

Abstract

PVA hydrogels are largely used for biomedical applications due to their biodegradability, biocompatibility, and suitable mechanical strength. These hydrogels can be synthetized by several methods. In this work hydrogels were obtained by two methods, freezing/thawing, and crosslinking with citric acid. The degree of swelling for both types of hydrogels was in the range of 60-70% which corresponds to a medium degree of swelling. Young’s modulus measurements gave values in the range of 0.20 to 4.00 MPa, which are proper values for tissue regeneration or wound healing applications. Crosslinking degree was found to be higher for the freezing/thawing hydrogels, in agreement with a lower percentage of hydration and a higher modulus. By means of the Flory-Rehner model, the interaction parameter (χ) of PVA - water was calculated. This value depends on the availability of OH groups in the polymer. The highest value of c was found for the hydrogels crosslinked with citric acid, revealing that their water-polymer interactions are weaker than those occurring in freezing/thawing hydrogels, which has more available OH groups. However, values higher than 0.5 were found for both types of hydrogels, indicating insolubility in water; therefore, these values imply mechanical stability in aqueous solutions for a relative long time. It is concluded that freezing/thawing is a more reproducible method, which allows the modulation of the crosslinking degree, perhaps, the most important parameter to be controlled.

|Abstract
= 491 veces | PDF (ESPAÑOL (ESPAÑA))
= 507 veces|

Downloads

Download data is not yet available.

References

T. S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. H. Kadhum, et al., “Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites”, Molecules, vol. 20, no. 12, pp. 22833-22847, 2015

S. Jiang, S. Liu, W. Feng, “PVA hydrogel properties for biomedical application”, Journal of the mechanical behavior of biomedical materials, vol. 4, no. 7, pp. 1228-1233, 2011

C. M. Hassan, N. A. Peppas, “Structure and morphology of freeze/thawed PVA hydrogels”, Macromolecules, vol. 33, no.7, pp. 2472-2479, 2000

C. Birck, S. Degoutin, N. Tabary, V. Miri, M. Bacquet, “New crosslinked cast films based on poly(vinyl alcohol): Preparation and physico-chemical properties”, Express Polymer Letters, vol. 8, no. 12, pp. 941–952, 2014

J. Z. Merck, C. S. Raota, J. Duarte, et al., “Development of poly (vinyl alcohol)-based membranes by the response surface methodology for environmental applications”, Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, vol. 24, no. 5, pp. e5, 2020

A. Ramirez, J. L. Benítez, L. Rojas de Astudillo, et al., “Materiales poliméricos de tipo hidrogeles: revisión sobre su caracterización mediante FTIR, DSC, MEB y MET”, Revista Latinoamericana de Metalurgia y Materiales, vol. 36, no. 2, pp. 108-130, 2016

I. Katime, O. Katime, D. Katime, A. Issa, Los materiales inteligentes de este milenio, Bilbao, UPV ed., Universidad País Vasco, España, 2004

D. Torres, “Determinacion de parametro de solubilidad y propiedades termodinamicas del poli (alcohol vinilico) (PVA) reticulado con acidos carboxilicos álifaticos mediante pruebaas de hinchamiento”, Tesis de Ingeniería, Universidad Nacional autonoma de Mexico, 2016

M. Quesada-Perez, J. A. Maroto-Centeno, J. Forcada, R. Hidalgo-Alvarez, “Gel swelling theories: the classical formalism and recent approaches”, Soft Matter, vol. 7, pp. 10536-10547, 2011.

E. E. Shafee, H. F. Naguib, "Water sorption in cross-linked poly(vinyl alcohol) networks”, Polymer, vol. 44, pp. 1647–1653, 2003

M. Sen, Y. OlgunGüven, "Determination of average molecular weight between cross-links (Mc) from swelling behaviours of diprotic acid-containing hydrogels", Polymer University, vol. 40, pp. 2969-2974, 1999

J. Wang, W. Wu, “Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels”, European polymer journal, vol. 41, no. 5, pp. 1143-1151, 2005

Base de datos de propiedades de polímeros, (2021), [Online], Available: http://polymerdatabase.com/polymer%20physics/Flory%20Rehner.html

N. A. Peppas, E. Merrill, “Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks”, Journal of applied polymer Science, vol. 21, no. 7, pp. 1763-1770, 1977

N. E. Vrana, Y. Liu, G. B. McGuinness, P. A. Cahill P. A., “Characterization of poly (vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds”, Macromolecular symposia, vol. 269, no. 1, pp. 106-110, 2008

ASTM International, ASTM D-792-20: Standard test methods for density and specific gravity (relative density) of plastics by displacement, PA: American Society for Testing and Materials, USA, 2020

Z. Lin, W. Wu, J. Wang, X. Jin, “Studies on swelling behaviors, mechanical properties, network parameters and thermodynamic interaction of water sorption of 2-hydroxyethyl methacrylate/novolac epoxy vinyl ester resin copolymeric hydrogels”, Reactive & Functional Polymers, vol.67, pp. 789–797, 2007

Y. L. Contreras-Marín, R. M. Quispe-Siccha, R. M., “Construcción y Caracterización Físico-Biológica de un Andamio de Alcohol Poli Vinílico”, In: 41 Congreso Nacional de Ingeniería Biomédica, 2018, pp. 318-321

C. Vallejo, M. E. Londoño, “Synthesis and Characterization of Polyvinyl Alcohol Hydrogels by Freezing/Thawing Technique for Medical Applications”, Revista EIA, no.12, pp. 59-66, 2009

E. Oyarce, G. D. C. Pizarro, D. P. Oyarzún, C. Zúñiga, and J. Sánchez, “Hydrogels based on 2-hydroxyethyl methacrylate: synthesis, characterization and hydration capacity,” Journal of Chilean. Chemical Society, vol. 65, no. 1, pp. 4682–4685, Mar. 2020

Published

2022-09-14

How to Cite

Gartner Vargas, C., Martínez Parra, M. I., Garzón Montes, E., & Pérez Jaramillo, D. L. (2022). FLORY-HUGGINS INTERACTION PARAMETER FOR PVA-WATER IN HYDROGELS PREPARED BY TWO METHODS: FREEZING/THAWING AND CROSSLINKING WITH CITRIC ACID. Revista Colombiana De Materiales, 1(19), 64–74. https://doi.org/10.17533/RCM/udea.rcm.n19a06