Aplicación de pigmentos producidos por Streptomyces coelicolor en la síntesis de nanopartículas de plata con actividad antimicrobiana

Autores/as

DOI:

https://doi.org/10.17533/udea.hm.v13n1a04

Palabras clave:

Actinorhodina, Farmacorresistencia Bacteriana, Nanopartícula, Nanotecnología, Pigmentos, Streptomyces coelicolor

Resumen

Streptomyces son bacterias Gram positivas que pertenecen al phylum Actinobacteria. Dentro de este género, la especie que más se destaca es Streptomyces coelicolor que codifica más de 20 grupos de genes involucrados en la biosíntesis de metabolitos secundarios bioactivos como antibióticos, los cuales han sido relevantes en medicina y biotecnología. Esta revisión tiene como objetivo identificar el potencial que tienen los pigmentos producidos por S. coelicolor mediante la aplicación de la nanotecnología en la síntesis de nanopartículas de plata, como una alternativa en el tratamiento de infecciones causadas por microorganismos resistentes. Hallazgos obtenidos en diferentes trabajos, resaltan las propiedades de esta especie para producir metabolitos secundarios como compuestos antibacterianos,antifúngicos, antivirales, antitumorales y anti-hipertensivos. Además, este grupo de bacterias son ideales para la formación de nanopartículas de plata extracelular e intracelularmente, ya que les proporciona una adecuada estabilidad como también polidispersidad, demostrando una amplia actividad bactericida contra microorganismos como Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Shigella dysenteriae, Klebsiella pneumoniae y Salmonella typhi. De esta manera, surge un gran interés por estos nanomateriales con actividad antimicrobiana, como una alternativa terapéutica para el control de patógenos resistentes a los fármacos tradicionales y como nuevos biocidas seguros y beneficiosos en el control de infecciones.

|Resumen
= 646 veces | PDF
= 701 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Paola Andrea Santos Ruiz, Universidad Colegio Mayor de Cundinamarca

Grupo de investigación Relaciones microbianas y Epidemiológicas aplicadas al Laboratorio Clínico y Molecular - REMA. Facultad Ciencias de la Salud, Programa Maestría en Microbiología, Universidad Colegio Mayor de Cundinamarca. Bogotá, Colombia. e-mail: psantos@unicolmayor.edu.co

 

Laura-N Barrios, Universidad Colegio Mayor de Cundinamarca

Grupo de investigación Relaciones microbianas y Epidemiológicas aplicadas al Laboratorio Clínico y Molecular - REMA. Facultad Ciencias de la Salud, Programa Maestría en Microbiología, Universidad Colegio Mayor de Cundinamarca. Bogotá, Colombia

Citas

[1]. Medici S, Peana M, Nurchi VM, Zoroddu MA. Medical Uses of Silver: History, Myths, and Scientific Evidence. J Med Chem. 62(13):5923-5943. DOI: 10.1021/acs.jmedchem.8b01439

[2]. Ghosh S, Kaushik R, Nagalakshmi K, Hoti SL, Menezes GA, Harish BN, Vasan HN. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohydr Res. 2010; 345(15):2220-7. DOI: 10.1016/j.carres.2010.08.001.

[3]. Karthik L, Kumar G, Kirthi AV, Rahuman AA, Bhaskara Rao K V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng. 2014;37(2):261–7. DOI: 10.1007/s00449-013-0994-3

[4]. Hernández-Saldaña OF, Barboza-Corona JE, Bideshi DK, Casados-Vázquez LE. New bacteriocin-like substances produced by Streptomyces species with activity against pathogens. Folia Microbiol (Praha). 2020;65(4):669–78. DOI: 10.1007/s12223-020-00770-z.

[5]. Liu X, Tang J, Wang L, Giesy JP. Al2O3 nanoparticles promote secretion of antibiotics in Streptomyces coelicolor by regulating gene expression through the nano effect. Chemosphere. 2019; 226: 687-695. DOI: 10.1016/j.chemosphere.2019.03.156.

[6]. Ubillus JA, Quispe JL, Durán RR, Trujillo SM, Salazar LL. Actividad antimicrobiana y sinérgica de metabolitos producidos por producidos por Streptomyces erythrogriseus M10-77 de origen marino. Rev. Soc. Ven. Microbiol. 2015;(35):13–9. https://pesquisa.bvsalud.org/portal/resource/pt/lil-780209

[7]. Hebeish A, El-Rafie MH, EL-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–15. DOI: 10.1016/j.ijbiomac.2014.01.071

[8]. Tanasupawat S, Phongsopitanun W, Suwanborirux K, Ohkuma M, Kudo T. Streptomyces actinomycinicus sp. Nov., isolated from soil of a peat swamp forest. Int J Syst Evol Microbiol. 2016; 66(1): 290–5. DOI: 10.1099/ijsem.0.000716

[9]. Tenconi E, Traxler MF, Hoebreck C, van Wezel GP, Rigali S. Production of prodiginines is part of a programmed cell death process in Streptomyces coelicolor. Front Microbiol. 2018; 9: 1742. DOI: 10.3389/fmicb.2018.01742

[10]. Sivasankar P, Seedevi P, Poongodi S, Sivakumar M, Murugan T, Sivakumar L, et al. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr Polym. 2018;181():752–9. DOI: 10.1016/j.carbpol.2017.11.082

[11]. Zhu Y, Lu T, Zhang J, Zhang P, Tao M, Pang X. A novel XRE family regulator that controls antibiotic production and development in Streptomyces coelicolor. Appl Microbiol Biotechnol. 2020;104(23):10075–89. DOI: 10.1007/s00253-020-10950-z

[12]. Nodwell JR. Microbe Profile: Streptomyces coelicolor: a burlesque of pigments and phenotypes. Microbiology. 2019;165:953–5. DOI: 10.1099/mic.0.000821

[13]. Bobek J, Šmídová K, Čihák M. A waking review: Old and novel insights into the spore germination in Streptomyces. Front Microbiol. 2017;8:1–12. DOI: 10.3389/fmicb.2017.02205

[14]. Yagüe P, Willemse J, Koning RI, Rioseras B, López-García MT, Gonzalez-Quiñonez N, et al. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae. Nat Commun. 2016; 12;7: 12467. DOI: 10.1038/ncomms12467

[15]. Antoraz S. Mejora genética de cepas de Streptomyces coelicolor para la producción de metabolitos secundarios mediante el estudio de su regulación por sistema de dos componentes [tesis doctoral]. Barcelona: Universidad de Salamanca CSIC-USAL - Instituto de Biología Funcional y Genómica (IBFG); 2018.

[16]. Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. T The complex extracellular biology of Streptomyces. FEMS Microbiol Rev. 2010; 34(2): 171-98. DOI: 10.1111/j.1574-6976.2009.00206.x

[17]. Mavituna F, Luti KJ, Gu L. In Search of the E. coli Compounds that Change the Antibiotic Production Pattern of Streptomyces coelicolor During Inter-species Interaction. Enzyme Microb Technol. 2016; 90: 45-52. DOI: 10.1016/j.enzmictec.2016.03.009

[18]. Bednarz B, Kotowska M, Pawlik KJ. Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol. 2019; 103(16): 6423-6434. DOI: 10.1007/s00253-019-09975-w

[19]. Daniel-Ivad M, Hameed N, Tan S, Dhanjal R, Socko D, Pak P, Gverzdys T, Elliot MA, Nodwell JR. An Engineered Allele of afsQ1 Facilitates the Discovery and Investigation of Cryptic Natural Products. ACS Chem Biol. 2017; 12(3): 628-634. DOI: 10.1021/acschembio.6b01002.

[20]. Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Vol. 13, Biotechnology Journal. 2018.

[21]. Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J. 2018; 13(1). DOI: 10.1002/biot.201700465

[22]. Chen S, Zheng G, Zhu H, He H, Chen L, Zhang W, Jiang W, Lu Y. Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in Streptomyces coelicolor. FEMS Microbiol Lett. 2016; 363(15):fnw160. DOI: 10.1093/femsle/fnw160

[23]. Fu J, Zong G, Zhang P, Zhao Z, Ma J, Pang X, Cao G. XdhR negatively regulates actinorhodin biosynthesis in Streptomyces coelicolor M145. FEMS Microbiol Lett. 2017; 364(22).DOI: 10.1093/femsle/fnx226

[24]. Mak S, Nodwell JR. Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. Mol Microbiol. 2017; 106(4): 597-613. DOI: 10.1111/mmi.13837

[25]. Manikprabhu D, Lingappa K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J Pharm Res. 2013;6(2):255–60. DOI: 10.1016/j.jopr.2013.01.022

[26]. Fürstner A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew Chem Int Ed Engl. 2003; 42(31): 3582-603. DOI: 10.1002/anie.200300582

[27]. Mo S, Sydor PK, Corre C, Alhamadsheh MM, Stanley AE, Haynes SW, Song L, Reynolds KA, Challis GL. Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol. 2008; 15(2): 137-48. DOI: 10.1016/j.chembiol.2007.11.015.

[28]. Liu P, Zhu H, Zheng G, Jiang W, Lu Y. Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci. 2017; 60(9): 948-957. DOI: 10.1007/s11427-017-9117-x.

[29]. Meschke H, Walter S, Schrempf H. Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ Microbiol. 2012; 14(4):940-52. DOI: 10.1111/j.1462-2920.2011.02665.x

[30]. Bum Kim H, Smith CP, Micklefield J, Mavituna F. Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab Eng. 2004; 6(4): 313–25. DOI: 10.1016/j.ymben.2004.04.001

[31]. Bednarz B, Millan-Oropeza A, Kotowska M, Świat M, Quispe Haro JJ, Henry C, et al. Coelimycin Synthesis Activatory Proteins Are Key Regulators of Specialized Metabolism and Precursor Flux in Streptomyces coelicolor A3(2). Front Microbiol. 2021; 12: 1–17. DOI: 10.3389/fmicb.2021.616050

[32]. Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci. 2012; 3(9): 2716–20. DOI: 10.1039/C2SC20410J

[33]. Zarina, Nanda A. Combined efficacy of antibiotics and biosynthesised silver nanoparticles from streptomyces albaduncus. Int J PharmTech Res. 2014;6(6):1862–9.

[34]. Chauhan R, Kumar A, Abraham J. A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm. 2013;81(2):607–21. DOI: 10.3797/scipharm.1302-02

[35]. Restrepo CV, Villa CC. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ Nanotechnology, Monit Manag. 2021; 15: 100428. DOI: 10.1016/j.enmm.2021.100428

[36]. Sanjivkumar M, Vaishnavi R, Neelakannan M, Kannan D, Silambarasan T, Immanuel G. Investigation on characterization and biomedical properties of silver nanoparticles synthesized by an actinobacterium Streptomyces olivaceus (MSU3). Biocatal Agric Biotechnol. 2019;17: 151–9. DOI: 10.1016/j.bcab.2018.11.014

[37]. Manikprabhu D, Lingappa K. Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33 pigment: An antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Mater Sci Eng C. 2014; 45: 434–7. DOI: 10.1016/j.msec.2014.09.034

[38]. Dubey SP, Lahtinen M, Särkkä H, Sillanpää M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surfaces B Biointerfaces. 2010;80(1). DOI: 10.1016/j.colsurfb.2010.05.024

[39]. Abdelrahim K, Younis S, Mohamed A, Salmeen K, Mustafa AEMA, Moussa S. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. 2017; 24(1): 208–16. DOI: 10.1016/j.sjbs.2016.02.025

[40]. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol. 2014; 98(19): 8083–97. DOI: 10.1007/s00253-014-5953-7

[41]. Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol. 2017;15(1):31–9. DOI: 10.1016/j.jgeb.2017.04.005

[42]. Soltani-Horand P, Vaghari H, Soltani-Horand J, Adibpour M, Jafarizadeh-Malmiri H. Extracellular Mycosynthesis of Antibacterial Silver Nanoparticles Using Aspergillus flavus and Evaluation of their Characteristics. Int J Nanosci. 2020;19(2). DOI: 10.1142/S0219581X19500091

[43]. Binupriya AR, Sathishkumar M, Yun SI. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surfaces B Biointerfaces. 2010;79(2):531–4. DOI: 10.1016/j.colsurfb.2010.05.021

[44]. Mohanta YK, Behera SK. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess Biosyst Eng. 2014;37(11):2263–9. DOI: 10.1007/s00449-014-1205-6

[45]. Abdeen S, Geo S, Sukanya, P.K. P, Dhanya. Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens. 2014;5(2):155–62. DOI: 10.7508/IJND.2014.02.008

[46]. Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Pazhanimurugan R, Balagurunathan R. A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surfaces B Biointerfaces. 2013;111:680–7. DOI: 10.1016/j.colsurfb.2013.06.045

[47]. Składanowski M, Wypij M, Laskowski D, Golińska P, Dahm H, Rai M. Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci. 2017; 28(1): 59–79. DOI: 10.1007/s10876-016-1043-6

[48]. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res. 2016;42(3):301–12. DOI: 10.1016/j.ejar.2016.05.004

[49]. Sánchez de la Nieta R, Antoraz S, Alzate JF, Santamaría RI, Díaz M. Antibiotic Production and Antibiotic Resistance: The Two Sides of AbrB1/B2, a Two-Component System of Streptomyces coelicolor. Front Microbiol. 2020;11(October):1–16. DOI: 10.3389/fmicb.2020.587750

[50]. El-Naggar NEA, Abdelwahed NAM. Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes. J Microbiol. 2014;52(1):53–63. DOI: 10.1007/s12275-014-3410-z

[51]. Bhosale RS, Hajare KY, Mulay B. Biosynthesis, Characterization and Study of Antimicrobial Effect of Silver Nanoparticles by Actinomycetes spp. Int J Curr Microbiol Appl Sci. 2015;2(2):144–51.

Descargas

Publicado

2022-08-16

Cómo citar

Santos Ruiz, P. A., & Barrios Espinel, L. N. (2022). Aplicación de pigmentos producidos por Streptomyces coelicolor en la síntesis de nanopartículas de plata con actividad antimicrobiana. Hechos Microbiológicos, 13(1), 2–10. https://doi.org/10.17533/udea.hm.v13n1a04

Número

Sección

Artículos de revisión