Bacteriófagos más allá de la fagoterapia, Aplicaciones para el control bacteriano en la clínica, la industria y el ambiente
Applications for bacterial control in clinic, industry, and the environment
DOI:
https://doi.org/10.17533/udea.hm.v13n1a03Palabras clave:
Biocontrol, Cóctel de Fagos, Superficies, Resistencia antimicrobiana, Bacteriófagos, BiopelículasResumen
Introducción: Los bacteriófagos son virus que infectan bacterias, representan la entidad más abundante del planeta, son bastante ubicuos ya que se encuentran en la mayoría de ecosistemas. Sobre la base de suscaracterísticas únicas y propiedades antibacterianas, son cada vez más atractivos en aplicaciones más allá de la fagoterapia. Objetivo: Describir las aplicaciones que se han enfocado en ampliar el uso de los fagos para control, principalmente de biopelículas, ya sea en superficies bióticas (alimentos) o abióticas (superficies, agua y redes de distribución, entre otras.), así como también en sectores tan diversos que incluyen la industria, la clínica y el ambiente con resultados prometedores. Metodología: Búsqueda bibliográfica en las bases de datos PMC Medline y ScienceDirect de literatura publicada entre los años 2005-2021. Resultados: Los resultados de los estudios muestran un panorama
bastante prometedor sobre la utilidad de los fagos como estrategia de control en los diferentes contextos analizados. Conclusión: los bacteriófagos conforman una herramienta eficaz que permitirán un futuro próximo mejorar procesos industriales, la salud humana y ambiental.
Descargas
Citas
[1] Abedon ST, Thomas-Abedon C, Thomas A, Mazure H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage. 2011;1(3):174-178, DOI: 10.4161/BACT.1.3.16591.
[2] Summers WC. Félix Hubert d'Herelle (1873-1949): History of a scientific mind. Bacteriophage. 2017; 6(4):e1270090. DOI: 10.1080/21597081.2016.1270090
[3] Beckerich A, Hauduroy P. Le Bacteriophage de d'Herelle: Ses Applications Therapeutiques. J Bacteriol. 1923; 8(2):163-71. DOI: 10.1128/jb.8.2.163-171.1923.
[4] Ho K. Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era. Perspect Biol Med. 2001; 44(1):1-16. DOI: 10.1353/pbm.2001.0006.
[5] Myelnikov D. An Alternative Cure: The Adoption and Survival of Bacteriophage Therapy in the USSR, 1922-1955. J Hist Med Allied Sci. 2018; 73(4):385-411. DOI: 10.1093/jhmas/jry024.
[6] Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev. 2019; 32(2):e00066-18. DOI: 10.1128/CMR.00066-18.
[7] Ackermann HW, Prangishvili D. Prokaryote viruses studied by electron microscopy. Arch Virol. 2012; 157(10):1843-9. DOI: 10.1007/s00705-012-1383-y
[8] Kutter E, Sulakvelidze A, directeurs. Bacteriophages. 0 éd. CRC Press; 2004. DOI: 10.1201/9780203491751.
[9] Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141-51. DOI: 10.1007/s00253-015-7247-0
[10] Barbirz S, Becker M, Freiberg A, Seckler R. Phage tailspike proteins with beta-solenoid fold as thermostable carbohydrate binding materials. Macromol Biosci. 2009; 9(2):169-73. DOI: 10.1002/mabi.200800278.
[11] Moak M, Molineux IJ. Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol. 2004; 51(4):1169-83. DOI: 10.1046/j.1365-2958.2003.03894.x.
[12] Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol. 2013;39(4):427-34. DOI: 10.3109/1040841X.2012.723675.
[13] Fischetti VA. Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol. 2008;11(5):393-400. DOI: 10.1016/j.mib.2008.09.012.
[14] Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP, Miller S, Volckaert G, Lavigne R. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. mBio. 2014;5(4):e01379-14. DOI: 10.1128/mBio.01379-14.
[15] Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. Endolysins as antimicrobials. Adv Virus Res. 2012;83:299-365. DOI: 10.1016/B978-0-12-394438-2.00007-4.
[16] García P, Rodríguez L, Rodríguez A, Martínez B. Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol. 2010;21(8):373–382. DOI: 10.1016/J.TIFS.2010.04.010.
[17] Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881-90. DOI: 10.3201/eid0809.020063.
[18] Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978 Jan;238(1):86-95. doi: 10.1038/scientificamerican0178-86.
[19] Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-22. DOI: 10.1126/science.284.5418.1318.
[20] Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol. 2012;30(9):453-65. DOI: 10.1016/j.tibtech.2012.05.003.
[21] Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623‑33. DOI: 10.1038/nrmicro2415.
[22] Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493-512. DOI: 10.4155/fmc.15.6.
[23] Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol. 2007;34(9):577-88. DOI: 10.1007/s10295-007-0234-4.
[24] Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017;104(3):365-376. DOI: 10.1111/mmi.13634.
[25] Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem. 2016;80(1):7-12. DOI: 10.1080/09168451.2015.1058701.
[26] Tolker-Nielsen T. Biofilm Development. Microbiol Spectr. 2015;3(2):MB-0001-2014. DOI: 10.1128/microbiolspec.MB-0001-2014.
[27] McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2011;10(1):39-50. DOI: 10.1038/nrmicro2695.
[28] Purevdorj-Gage B, Costerton WJ, Stoodley P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology (Reading). 2005;151(Pt 5):1569-1576. DOI: 10.1099/mic.0.27536-0.
[29] Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. DOI: 10.1128/MMBR.00013-14.
[30] Hughes G, Webber MA. Novel approaches to the treatment of bacterial biofilm infections. Br J Pharmacol. 2017;174(14):2237-2246. DOI: 10.1111/bph.13706.
[31] Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front Microbiol. 2020;10:2894. DOI: 10.3389/fmicb.2019.02894.
[32] Al-Wrafy F, Brzozowska E, Górska S, Gamian A. Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig Med Dosw (Online). 2017;71(0):78-91. DOI: 10.5604/01.3001.0010.3792.
[33] Yan Z, Huang M, Melander C, Kjellerup BV. Dispersal and inhibition of biofilms associated with infections. J Appl Microbiol. 2020;128(5):1279-1288. doi: 10.1111/jam.14491.
[34] Muziasari WI, Pitkänen LK, Sørum H, Stedtfeld RD, Tiedje JM, Virta M. The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms. Front Microbiol. 2017;7:2137. DOI: 10.3389/fmicb.2016.02137.
[35] Wang J, Liu Q, Wu B, Zhao F, Ma S, Hu H, Zhang X, Ren H. Quorum sensing signaling distribution during the development of full-scale municipal wastewater treatment biofilms. Sci Total Environ. 2019;685:28-36. DOI: 10.1016/j.scitotenv.2019.05.249.
[36] Fan X, Li W, Zheng F, Xie J. Bacteriophage inspired antibiotics discovery against infection involved biofilm. Crit Rev Eukaryot Gene Expr. 2013;23(4):317-26. DOI: 10.1615/critreveukaryotgeneexpr.2013007717.
[37] Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell. 2005;123(5):861-73. doi: 10.1016/j.cell.2005.09.012.
[38] Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310-47. DOI: 10.1128/MMBR.00041-08.
[39] Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 2007;104(27):11197-202. DOI: 10.1073/pnas.0704624104.
[40] Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 200;67(6):2746-53. DOI: 10.1128/AEM.67.6.2746-2753.2001.
[41] Pei R, Lamas-Samanamud GR. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80(17):5340-8. DOI: 10.1128/AEM.01434-14
[42] Brüssow H. Bacteriophage-host interaction: from splendid isolation into a messy reality. Curr Opin Microbiol. 2013 Aug;16(4):500-6. DOI: 10.1016/j.mib.2013.04.007.
[43] Nzakizwanayo J, Hanin A, Alves DR, McCutcheon B, Dedi C, Salvage J, Knox K, Stewart B, Metcalfe A, Clark J, Gilmore BF, Gahan CG, Jenkins AT, Jones BV. Bacteriophage Can Prevent Encrustation and Blockage of Urinary Catheters by Proteus mirabilis. Antimicrob Agents Chemother. 2015;60(3):1530-6. DOI: 10.1128/AAC.02685-15.
[44] Cano EJ, Caflisch KM, Bollyky PL, Van Belleghem JD, Patel R, Fackler J, Brownstein MJ, Horne B, Biswas B, Henry M, Malagon F, Lewallen DG, Suh GA. Phage Therapy for Limb-threatening Prosthetic Knee Klebsiella pneumoniae Infection: Case Report and In Vitro Characterization of Anti-biofilm Activity. Clin Infect Dis. 2021;73(1):e144-e151. DOI: 10.1093/cid/ciaa705
[45] Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, Que YA, Beyth N, Hazan R. Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol. 2015 Apr;81(8):2696-705. doi: 10.1128/AEM.00096-15.
[46] Shlezinger M, Friedman M, Houri-Haddad Y, Hazan R, Beyth N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PLoS One. 2019;14(7):e0219599. DOI: 10.1371/journal.pone.0219599.
[47] Shlezinger M, Khalifa L, Houri-Haddad Y, Coppenhagen-Glazer S, Resch G, Que YA, Beyth S, Dorfman E, Hazan R, Beyth N. Phage Therapy: A New Horizon in the Antibacterial Treatment of Oral Pathogens. Curr Top Med Chem. 2017;17(10):1199-1211. DOI: 10.2174/1568026616666160930145649.
[48] Alves DR, Perez-Esteban P, Kot W, Bean JE, Arnot T, Hansen LH, Enright MC, Jenkins AT. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol. 2016;9(1):61-74. doi: 10.1111/1751-7915.12316.
[49] Mathieu J, Yu P, Zuo P, Da Silva MLB, Alvarez PJJ. Going Viral: Emerging Opportunities for Phage-Based Bacterial Control in Water Treatment and Reuse. Acc Chem Res. 2019;52(4):849-857. DOI: 10.1021/acs.accounts.8b00576
[50] Zhang Y, Hu Z. Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng. 2013;110(1):286-95. DOI: 10.1002/bit.24630.
[51] Goldman G, Starosvetsky J, Armon R. Inhibition of biofilm formation on UF membrane by use of specific bacteriophages. J Memb Sci. 2009;342(1‑2):145‑52. DOI: 10.1016/j.memsci.2009.06.036.,
[52] Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769-83. DOI: 10.2217/fmb.13.47.
[53] Coulter LB, McLean RJ, Rohde RE, Aron GM. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses. 2014;6(10):3778-86. DOI: 10.3390/v6103778.
[54] Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo JS, Carli A, Abdelbary H. Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus aureus Biofilms. Front Microbiol. 2018;9:127. DOI: 10.3389/fmicb.2018.00127.
[55] Shlezinger M, Coppenhagen-Glazer S, Gelman D, Beyth N, Hazan R. Eradication of Vancomycin-Resistant Enterococci by Combining Phage and Vancomycin. Viruses. 2019;11(10):954. DOI: 10.3390/v11100954.
[56] Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A. 2009;106(12):4629-34. DOI: 10.1073/pnas.0800442106.
[57] Chang RYK, Das T, Manos J, Kutter E, Morales S, Chan HK. Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients. AAPS J. 2019;21(3):49. DOI: 10.1208/s12248-019-0315-0.
[58] Casey E, van Sinderen D, Mahony J. In Vitro Characteristics of Phages to Guide 'Real Life' Phage Therapy Suitability. Viruses. 2018;10(4):163. DOI: 10.3390/v10040163.
[59] Tagliaferri TL, Jansen M, Horz HP. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front Cell Infect Microbiol. 2019;9:22. DOI: 10.3389/fcimb.2019.00022.
[60] Latz S, Krüttgen A, Häfner H, Buhl EM, Ritter K, Horz HP. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions. Viruses. 2017;9(11):315. DOI: 10.3390/v9110315.
[61] Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q. A Novel Polysaccharide Depolymerase Encoded by the Phage SH-KP152226 Confers Specific Activity Against Multidrug-Resistant Klebsiella pneumoniae via Biofilm Degradation. Front Microbiol. 2019;10:2768. DOI: 10.3389/fmicb.2019.02768.
[62] Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent. Antimicrob Agents Chemother. 2017;61(7):e02666-16. DOI: 10.1128/AAC.02666-16.
[63] Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S. A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol. 2011;11:226. DOI: 10.1186/1471-2180-11-226..
[64] Poonacha N, Nair S, Desai S, Tuppad D, Hiremath D, Mohan T, Vipra A, Sharma U. Efficient Killing of Planktonic and Biofilm-Embedded Coagulase-Negative Staphylococci by Bactericidal Protein P128. Antimicrob Agents Chemother. 2017;61(8):e00457-17. DOI: 10.1128/AAC.00457-17.
[65] Díez-Martínez R, De Paz HD, García-Fernández E, Bustamante N, Euler CW, Fischetti VA, Menendez M, García P. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother. 2015;70(6):1763-73. DOI: 10.1093/jac/dkv038.
[66] Meng X, Shi Y, Ji W, Meng X, Zhang J, Wang H, Lu C, Sun J, Yan Y. Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Appl Environ Microbiol. 2011;77(23):8272-9. DOI: 10.1128/AEM.05151-11.
[67] Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MM, Teixeira JA, Balcão VM. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res. 2016;191:51-80. DOI: 10.1016/j.micres.2016.04.008.
[68] Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother. 2015;59(4):1983-91. DOI: 10.1128/AAC.04641-14.
[69] ang H, Bi Y, Shang X, Wang M, Linden SB, Li Y, Li Y, Nelson DC, Wei H. Antibiofilm Activities of a Novel Chimeolysin against Streptococcus mutans under Physiological and Cariogenic Conditions. Antimicrob Agents Chemother. 2016 21;60(12):7436-7443. DOI: 10.1128/AAC.01872-16.
[70] Vázquez R, García P. Synergy Between Two Chimeric Lysins to Kill Streptococcus pneumoniae. Front Microbiol. 2019;10:1251. DOI: 10.3389/fmicb.2019.01251.
[71] Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228-41. DOI: 10.1016/S0140-6736(10)61458-4.
[72] Otter JA, Yezli S, Salkeld JA, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control. 2013;41(5 Suppl):S6-11. DOI: 10.1016/j.ajic.2012.12.004.
[73] Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am J Respir Cell Mol Biol. 2018;58(4):428-439. DOI: 10.1165/rcmb.2017-0321TR.
[74] Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6(2):109-119. DOI: 10.1016/j.gendis.2019.04.001.
[75] DeLeo FR, Chambers HF. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest. 2009;119(9):2464-74. DOI: 10.1172/JCI38226.
[76] Larramendy S, Deglaire V, Dusollier P, Fournier JP, Caillon J, Beaudeau F, Moret L. Risk Factors of Extended-Spectrum Beta-Lactamases-Producing Escherichia coli Community Acquired Urinary Tract Infections: A Systematic Review. Infect Drug Resist. 2020;13:3945-3955. DOI: 10.2147/IDR.S269033.
[77] Caselli E, D'Accolti M, Vandini A, Lanzoni L, Camerada MT, Coccagna M, Branchini A, Antonioli P, Balboni PG, Di Luca D, Mazzacane S. Impact of a Probiotic-Based Cleaning Intervention on the Microbiota Ecosystem of the Hospital Surfaces: Focus on the Resistome Remodulation. PLoS One. 2016;11(2):e0148857. doi: 10.1371/journal.pone.0148857.
[78] Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob Agents Chemother. 2016;61(1):e01162-16. DOI: 10.1128/AAC.01162-16.
[79] Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol. 2008;74(20):6230-8. DOI: 10.1128/AEM.01465-08.
[80] Woolston J, Parks AR, Abuladze T, Anderson B, Li M, Carter C, Hanna LF, Heyse S, Charbonneau D, Sulakvelidze A. Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage. 2013;3(3):e25697. doi: 10.4161/bact.25697.
[81] Chen LK, Liu YL, Hu A, Chang KC, Lin NT, Lai MJ, Tseng CC. Potential of bacteriophage ΦAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol. 2013;13:154. DOI: 10.1186/1471-2180-13-154.
[82] K. C. Jensen et al., “Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant Staphylococcus aureus and Potential Use as a Fomite Decontaminant,” PLoS One, vol. 10, no. 7, Jul. 2015, doi: 10.1371/JOURNAL.PONE.0131714.
[83] Jensen KC, Hair BB, Wienclaw TM, Murdock MH, Hatch JB, Trent AT, White TD, Haskell KJ, Berges BK. Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant Staphylococcus aureus and Potential Use as a Fomite Decontaminant. PLoS One. 2015;10(7):e0131714. DOI: 10.1371/journal.pone.0131714.
[84] D'Accolti M, Soffritti I, Piffanelli M, Bisi M, Mazzacane S, Caselli E. Efficient removal of hospital pathogens from hard surfaces by a combined use of bacteriophages and probiotics: potential as sanitizing agents. Infect Drug Resist. 2018;11:1015-1026. DOI: 10.2147/IDR.S170071.
[85] Adachi N, Tsukamoto S, Inoue Y, Azegami K. Control of Bacterial Seedling Rot and Seedling Blight of Rice by Bacteriophage. Plant Dis. 2012 Jul;96(7):1033-1036. doi: 10.1094/PDIS-03-11-0232-RE.
[86] Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol. 2007;73(6):1704-11. DOI: 10.1128/AEM.02118-06
[87] Balogh B, Jones JB, Iriarte FB, Momol MT. Phage therapy for plant disease control. Curr Pharm Biotechnol. 2010;11(1):48-57. DOI: 10.2174/138920110790725302.
[88] Vikram A, Woolston J, Sulakvelidze A. Phage Biocontrol Applications in Food Production and Processing. Curr Issues Mol Biol. 2021;40:267-302. DOI 10.21775/cimb.040.267.
[89] Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111-114. DOI: 10.4161/bact.1.2.14590..
[90] Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317-27. DOI: 10.1038/nrmicro2315.
[91] Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217-48. DOI: 10.1016/S0065-2164(10)70007-1.
[92] Skurnik M, Pajunen M, Kiljunen S. Biotechnological challenges of phage therapy. Biotechnol Lett. 2007;29(7):995-1003. DOI: 10.1007/s10529-007-9346-1.
[93] Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, Zizi M, Laire G, Lavigne R, Huys I, Van den Mooter G, Buckling A, Debarbieux L, Pouillot F, Azeredo J, Kutter E, Dublanchet A, Górski A, Adamia R. The phage therapy paradigm: prêt-à-porter or sur-mesure? Pharm Res. 2011;28(4):934-7. DOI: 10.1007/s11095-010-0313-5.
[94] Keen EC. Phage therapy: concept to cure. Front Microbiol. 2012;3:238. DOI: 10.3389/fmicb.2012.00238.
[95] Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057-98. DOI: 10.1016/S1473-3099(13)70318-9.
[96] Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917-42. DOI: 10.1111/1462-2920.12134.
[97] Tomova A, Ivanova L, Buschmann AH, Rioseco ML, Kalsi RK, Godfrey HP, Cabello FC. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ Microbiol Rep. 2015;7(5):803-9. DOI: 10.1111/1758-2229.12327.
[98] Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL. Waterborne pathogens: detection methods and challenges. Pathogens. 2015;4(2):307-34. DOI: 10.3390/pathogens4020307.
[99] Jassim SA, Limoges RG, El-Cheikh H. Bacteriophage biocontrol in wastewater treatment. World J Microbiol Biotechnol. 2016 Apr;32(4):70. DOI: 10.1007/s11274-016-2028-1.
[100] Pal P., Khairnar K. and Paunikar W. N. Causes and remedies for filamentous foaming in activated sludge treatment plant. Global NEST Journal. 2014;16(4):762‑72. DOI: 10.30955/gnj.001273.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Hechos Microbiológicos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.