Optimal portfolio selection based on first and second order Markov chains
DOI:
https://doi.org/10.17533/udea.le.n92a02Keywords:
portfolio selection, Markov chain, principal component analysis, risk aversion, stock indexAbstract
Searching for create investment strategies in pursuit of maximizing the expected return on investment and minimizing the risk two models of selection of optimal portfolios are studied. The first portfolio composition model is adjusted using logarithmic returns, and the other uses principal component analysis (PCA) at these returns. Then, for each of them its weighted performance is established and measures are created to establish the states of the first and second order Markov chains, this allows to predict whether the shaped portfolios will have bullish or bearish behaviors given the probabilities of the states of the Markov chains. An application is made using the daily closing price returns of 21 COLCAP shares for the period from January 2014 to October 2017. Concluding that in the Colombian Market a portfolio formed by PCA of the returns has a higher expected profitability and less risk in the long term, having an accuracy of model’s forecast according with the stationary vectors of the Markov chains
Downloads
References
Bhat, U. N. & Miller, G. K. (2002). Elements of Applied Stochastic Processes (3ra. ed.). New York: John Wiley & Sons.
Cecchetti, S. & Sigalotti, L. (2013). Forward-looking robust portfolio selection (Temi di Discussione Working Paper, No. 913). Recuperado de: http://doi.org/10.2139/ssrn.2281906
Fabozzi, F. J. & Markowitz, H. M. (2002). The theory and practice of investment management (1ra. ed.) New Jersey: John Wiley.
Falk, B. (1986). Further evidence on the asymmetric behavior of economic time series over the business cycle. Journal of Political Economy, 94(5), 1096-1109. http://doi.org/10.2307/1833193
Hyung, N. & de Vries, C. G. (2007). Portfolio selection with heavy tails. Journal of Empirical Finance, 14(3), 383-400. http://doi.org/10.1016/j.jempfin.2006.06.004
Jackson, J. E. (1991). A user’s guide to principal components (1ra. ed.). John Wiley.
Jiménez Moscoso, J. A. (2017). Álgebra matricial con aplicaciones en estadística (3ra. ed.). Bogotá, Colombia: Universidad Nacional de Colombia.
Kemeny, J. G. & Snell, J. L. (1976). Finite Markov Chains. New York: Springer-Verlag.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7 (1), 77-91.
Markowitz, H. (1959). Portfolio selection: Efficient diversification of investment. New York: John Wiley.
Martínez, C. L.; Restrepo, J. & Velásquez, J. (2004). Selección de portafolios usando simulación y optimización bajo incertidumbre. Dyna, 71(141), 37-57.
McQueen, G. & Throley, S. (1991). Are stock returns predictable? A test using Markov chains. The Journal of Finance, 46(1), 239-263. http://doi.org/10.2307/2328695
Meucci, A. (2010). Managing diversification (Bloomberg Education and Quantitative Research and Education Paper). Recuperado del sitio web de la biblioteca virtual SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1358533
Neftci, S. N. (1984). Are economic time series asymmetric over the business cycle? Journal of Political Economy, 92(2), 307-328. http://doi.org/10.2307/1831389
Parada, J. R. (2012). La teoría financiera y análisis técnico. Revista Universidad EAFIT, 35(116), 21-36.
Partovi, H. M. & Caputo, M. R. (2004). Principal portfolios: Recasting the Efficient frontier. Economics Bulletin, 7(3), 1-10.
Pasini, G. (2017). Principal component analysis for stock portfolio management. International Journal of Pure and Applied Mathematics, 115(1), 153-167. https://ijpam.eu/contents/2017-115-1/12/12.pdf
Peña, D. (2002). Análisis de datos multivariantes (1ra. ed.). Madrid, España: McGraw-Hill Interamericana de España.
Rachev, S.; Huber, I. & Ortobelli, S. (2002). Portfolio choice with heavy tailed distributions. Recuperado de: https://pdfs.semanticscholar.org/41a9/06b013eeb3c89e28435af8375f7eacb53fc3.pdf
Ramírez, J. C. & Sandoval, R. (2002). Patrones no lineales en los rendimientos de las acciones de la BMV: Una prueba basada en cadenas de Markov de segundo orden. Centro de Investigación y Docencia Económicas, A.C. (CIDE). Recuperado de: http://aleph.academica.mx/jspui/bitstream/56789/4312/1/DOCT2064958.PDF
Ramírez, J. C. & Sandoval, R. (2003). Una propuesta para evaluar pronósticos de rendimientos de acciones cuando las distribuciones empíricas no son normales estacionarias. Estudios Económicos, 18(2), 237-277.
Yang, L. (2015). An application of principal component analysis to stock portfolio management (Tesis de maestría, University of Canterbury, Nueva Zelanda).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Juan Manuel Gómez Romero, José Alfredo Jiménez Moscoso
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This page, by Universidad de Antioquia, is licensed under a Creative Commons Attribution License.
Authors who publish with this journal agree to retain copyright and grant the journal right of first publication, with the article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License allowing others to share it as long as they acknowledge its authorship and original publication in this journal.
Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), provided that these arrangements be not for profit and the journal be acknowledged as the original source of publication.
Authors are permitted and encouraged to post their papers online (e.g., in institutional repositories or on their websites), as it can lead to valuable exchanges as well as greater citation of the published work.