Desarrollo de concretos de bajo impacto ambiental a partir de residuos sílico-aluminosos activados alcalinamente del sector minero

Autores/as

  • Nicolás Pardo Universidad de Antioquia https://orcid.org/0000-0002-9217-1952
  • Francy Hurtado Universidad de Antioquia
  • Duván Agudelo Universidad de Antioquia
  • Guillermo Penagos Programa de las Naciones Unidas para el Desarrollo (PNUD)
  • Mauricio Correa Universidad de Antioquia
  • Esperanza López Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.rcm.342051

Palabras clave:

mortero, concreto, activación alcalina, residuos de minería, gel (N,C-A-S-H)

Resumen

Los residuos mineros (RM) generan grandes problemas ambientales debido a la alta y progresiva explotación de minerales y su consecuente disposición. La activación alcalina es un método utilizado para la fabricación de materiales de construcción, usando los residuos como materiales cementantes. En esta investigación se desarrollaron concretos a partir de RM activados alcalinamente. Los residuos de minería de carbón (arenosos-RC y arcillosos-RCd) y de minería aurífera de veta (colas de flotación-CF), fueron activados mediante una mezcla de solución NaOH y Na2SiO3. Inicialmente se fabricaron morteros activados alcalinamente, utilizando los RM molidos y/o con granulometría original y sustituciones parciales por cemento Pórtland tipo I del 10 y el 20% como co-aglutinante para los residuos molidos como precursores. Debido a que las CF molidas con 20% de sustitución parcial por cemento, no alcanzaron la resistencia del mortero y del concreto de referencia (mejor resistencia a la compresión a los 28 días de fraguado), se prepararon dos condiciones más. El diseño de mezcla de las CF molidas con 30% de cemento superó la resistencia a la compresión del mortero de referencia. Por lo tanto, se utilizó para fabricar concretos activados alcalinamente, los cuales también superaron la resistencia del concreto de referencia a los 28 días de fraguado con 25,3 MPa y con un porcentaje de reducción de emisiones del 29,04%.

|Resumen
= 607 veces | PDF
= 282 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Nicolás Pardo, Universidad de Antioquia

Grupo de Investigaciones Pirometalúrgicas y de Materiales (GIPIMME), Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Ingeniería de Materiales, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.

Francy Hurtado, Universidad de Antioquia

Grupo de Investigaciones Pirometalúrgicas y de Materiales (GIPIMME), Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Ingeniería de Materiales, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.

Duván Agudelo, Universidad de Antioquia

Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Ingeniería de Materiales, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.

Guillermo Penagos, Programa de las Naciones Unidas para el Desarrollo (PNUD)

Profesional sectorial Cambio Climático, Ministerio de Vivienda, Ciudad y Territorio, Bogotá, Colombia.

Mauricio Correa, Universidad de Antioquia

Profesor Asistente en la Universidad de Antioquia y Coordinador de los Laboratorios LabGIGA y Estudios Ambientales, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.

Esperanza López, Universidad de Antioquia

Coordinadora Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Ingeniería de Materiales, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.

Citas

Wills, B. A., Finch, J. A., “Tailings disposal,” In: Wills’ Mineral Processing Technology, , 2016.

Ministerio de Industria y Energía, “Manual de reutilización de residuos de la industria minera, siderometalúrgica y termoeléctrica.,” In: RESIDUOS PROCEDENTES DE LA INDUSTRIA MINERA DEL CARBÓN, 1st ed., ch. 1, Instituto Tecnológico GeoMinero de España, España, 1995.

Betzab, A., Residuos Mineros , Qué Son Y Posibilidades De Valorización Residuos Mineros, 2016.

Junta de Andalucía, Los Residuos Mineros, Andalucía, España, 2006.

Kinnunen, P., Ismailov, A., Solismaa, S., et al., “Recycling mine tailings in chemically bonded ceramics – a review”, Journal Of Cleaner Production, vol. 174, pp. 634–649, 2018.

Caballero, E., Sánchez, W., Ríos, Y C. A., “Synthesis of geopolymers from alkaline activation of gold minnig wastes”, Ingeniería Y Competitividad, vol. 16, no. 1, pp. 317–330, 2014.

Consoli, N. C., Da Silva, A. P., Nierwinski, H. P., et al., “Durability, strength, and stiffness of compacted gold tailings – cement mixes”, Canadian Geotechnical Journal, vol. 55, no. 4, pp. 486–494, 2018.

Gitari, M. W., Akinyemi, S. A., Thobakgale, R., et al., “Physicochemical and mineralogical characterization of musina mine copper and new union gold mine tailings: implications for fabrication of beneficial geopolymeric construction materials”, Journal Of African Earth Sciences, vol. 137, pp. 218–228, 2018.

Kiventerä, J., Lancellotti, I., Catauro, M., et al., “Alkali activation as new option for gold mine tailings inertization”, Journal Of Cleaner Production, vol. 187, pp. 76–84, 2018.

Sedira, N., Castro-gomes, J., “Study of an alkali-activated binder based on tungsten mining mud and brick powder waste”, 8th Scientific-Technical Conference On Material Problems In Civil Engineering, vol. 06002, pp. 1–8, 2018.

Solismaa, S., Ismailov, A., Karhu, M., et al., “Valorization of finnish mining tailings for use in the ceramics industry”, Bulletin Of The Geological Society Of Finland, vol. 90, no. 1, pp. 33–54, 2018.

Wei, B., Zhang, Y., Bao, S., “Preparation of geopolymers from vanadium tailings by mechanical activation”, Construction And Building Materials, vol. 145, pp. 236–242, 2017.

Ye, J., Zhang, W., Shi, D., “Properties of an aged geopolymer synthesized from calcined ore-dressing tailing of bauxite and slag”, Cement And Concrete Research, vol. 100, no. May, pp. 23–31, 2017.

Cai, L., Ma, B., Li, X., et al., “Mechanical and hydration characteristics of autoclaved aerated concrete (aac) containing iron-tailings: effect of content and fineness”, Construction And Building Materials, vol. 128, pp. 361–372, 2016.

Cong, X. Y., Lu, S., Yao, Y., et al., “Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete”, Materials And Design, vol. 97, pp. 155–162, 2016.

Ma, B. guo, Cai, L. xiong, Li, X. guo, et al., “Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products”, Journal Of Cleaner Production, vol. 127, pp. 162–171, 2016.

Belkheiri, D., Diouri, A., Taibi, M., et al., “Recycling of moroccan coal gangue in the elaboration of a portland clinker”, Journal Of Materials And Environmental Science, vol. 6, no. 6, pp. 1570–1577, 2015.

Li, X., Wang, H., “Gangue utilization methods inquiry,” no. Cmes, pp. 343–345, 2015.

Xu, G., Sun, C., Sun, Y., et al., “A new comprehensive utilization method for coal gangue: preparing alite-sulphoaluminate cement,” vol. 654, no. 1, pp. 1527–1532, 2013.

Liu, T., Li, X., Guan, L., et al., “Low-cost and environment-friendly ceramic foams made from lead-zinc mine tailings and red mud: foaming mechanism, physical, mechanical and chemical properties”, Ceramics International, vol. 42, no. 1, pp. 1733–1739, 2016.

Liu, T., Tang, Y., Li, Z., et al., “Red mud and fly ash incorporation for lightweight foamed ceramics using lead-zinc mine tailings as foaming agent”, Materials Letters, vol. 183, pp. 362–364, 2016.

Liu, T., Tang, Y., Han, L., et al., “Recycling of harmful waste lead-zinc mine tailings and fly ash for preparation of inorganic porous ceramics”, Ceramics International, vol. 43, no. 6, pp. 4910–4918, 2017.

Campillo Montoya, Luis Felipe Marín Osorio, Nolbayro Andrés Arias Gómez, J. A., López, M. E., ANEXO 39. Informe Elaboración De Morteros A Partir De Residuos De Minerales Auríferos Del Occidente Antioqueño, Colombia, 2016.

Han, F., Li, L., Song, S., et al., “Early-age hydration characteristics of composite binder containing iron tailing powder”, Powder Technology, vol. 315, pp. 322–331, 2017.

Shettima, A. U., Hussin, M. W., Ahmad, Y., et al., “Evaluation of iron ore tailings as replacement for fine aggregate in concrete”, Construction And Building Materials, vol. 120, pp. 72–79, 2016.

Provis, J. L., “Alkali-activated materials”, Cement And Concrete Research, 2017.

Pacheco-Torgal, F., Jalali, S., Labrincha, J. A., et al., Eco-Efficient Concrete, Woodhead Publishing Limited, Philadelphia, USA, 2013.

Vincenzini, P., Leonelli, C., “Geopolymers and geocements: low environmental impact ceramic materials,” In: Proceedings Of The 12 Th International Ceramics Congress, Part Of CIMTEC 2010- 12 Th International Ceramics Congress And 5th Forum On New Materials Montecatini Terme, p. 210 2010.

ASTM D421−85, “Standard practice for dry preparation of soil samples for particle-size analysis and determination of soil constants,” 2007.

Rivera, G., “Dosificación de mezclas de concreto,” In: Concreto Simple, Universidad del Cauca, 1st ed., ch. 8, Cauca, Colombia, 2013.

Comisión Asesora Permanente Para El Regimen De Construcciones Sismo Resistentes, NSR-10, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Colombia, 2010.

Spin S.A., Especificaciones Y Certificado De Calidad Flocsil, Colombia, 2018.

ACI Committee, “Standard practice for selecting proportions for normal heavyweight, and mass concrete, aci 211.1-91”, Manual Of Concrete Practice, no. Reapproved, pp. 1–38, 1997.

ASTM C39/C39M − 18, “Standard test method for compressive strength of cylindrical concrete specimens,” 2018.

CEMEX, Integrated Report CEMEX, 2017.

ARGOS, Integrated Report ARGOS, 2017.

LAFARGEHOLCIM, Sustainability Report LAFARGEHOLCIM, 2017.

Salazar Jaramillo, A., Determinación De Propiedades Físicas Y Estimación Del Consumo Energético En La Producción, De Acero, Concreto, Vidrio, Ladrillo Y Otros Materiales, Entre Ellos Los Alternativos Y Otros De Uso No Tradicional, Utilizados En La Construcción De Edificaciones, Santiago de Cali, Colombia, 2012.

International Finance Corporation, Environmental, Health, And Safety Guidelines CEMENT AND LIME MANUFACTURINGIn: DRAFT REVISED EHS GUIDELINES FOR CEMENT AND LIME MANUFACTURING-ENVIRONMENTAL, HEALTH, and SAFETY GUIDELINES TECHNICAL REVISION, SECOND PUBLIC CONSULTATION, World Bank Group, 2018.

Thannimalay, L., Yusoff, S., Zawawi, N. Z., “Life cycle assessment of sodium hydroxide”, Australian Journal Of Basic And Applied Sciences, vol. 7, no. 2, pp. 421–431, 2013.

Fawer, M., Concannon, M., Rieber, W., “Life cycle inventories for the production of sodium silicates”, International Journal Of Life Cycle Assessment, vol. 4, no. 4, pp. 207–212, 1999.

De Rossi, A., Simão, L., Ribeiro, M. J., et al., “In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin”, Materials Letters, vol. 236, pp. 644–648, 2019.

LaRosa, J. L., Kwan, S., Grutzeck, M. W., “Zeolite formation in class f fly ash blended cement pastes”, Journal Of The American Ceramic Society, vol. 75, no. 6, pp. 1574–1580, 1992.

Ojha, K., Pradhan, N. C., Samanta, A. N., “Zeolite from fly ash: synthesis and characterization”, Bulletin Of Materials Science, vol. 27, no. 6, pp. 555–564, 2004.

Alehyen, S., Achouri, M. E. L., Taibi, M., “Characterization, microstructure and properties of fly ash-based geopolymer”, Journal Of Materials And Environmental Sciences, vol. 8, no. 5, pp. 1783–1796, 2017.

Tang, Q., He, Y., Wang, Y. pin, et al., “Study on synthesis and characterization of zsm-20 zeolites from metakaolin-based geopolymers”, Applied Clay Science, vol. 129, pp. 102–107, 2016.

Grutzeck, M., Kwan, S., DiCola, M., “Zeolite formation in alkali-activated cementitious systems”, Cement And Concrete Research, vol. 34, no. 6, pp. 949–955, 2004.

Król, M., Mozgawa, W., “Zeolite layer on metakaolin-based support”, Microporous And Mesoporous Materials, vol. 282, no. February, pp. 109–113, 2019.

Guo, S., Zhang, Y., Wang, K., et al., “Delaying the hydration of portland cement by sodium silicate: setting time and retarding mechanism”, Construction And Building Materials, vol. 205, pp. 543–548, 2019.

Descargas

Publicado

2020-05-17

Cómo citar

Pardo, N., Hurtado, . F., Agudelo, D., Penagos, G., Correa, M., & López, E. (2020). Desarrollo de concretos de bajo impacto ambiental a partir de residuos sílico-aluminosos activados alcalinamente del sector minero. Revista Colombiana De Materiales, (15), 8–19. https://doi.org/10.17533/udea.rcm.342051

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>