.

Authors

  • Jaime Ávila National University of Colombia
  • Diego Camargo-Trillos National University of Colombia
  • Elizabeth Pabón National University of Colombia
  • Farid Chejne National University of Colombia

DOI:

https://doi.org/10.17533/udea.rcm.19451

Keywords:

Carbon xerogels, Impregnation, Nickel

Abstract

A sensitivity analysis of the partial replacement of sodium carbonate catalyst (C) by nickel acetate (Ac-Ni) over textural characteristics and the in-situ doped of nickel in monolithic carbon xerogel was performed. The molar ratios of resorcinol / sodium carbonate (R / C) from 600 to 1000 with addition of (Ac-Ni) nickel mass percentage from 1.5% to 3% were evaluated. Gas adsorption N2(-176 °C) and iodine adsorption were usedfor textural characterization of carbonxerogels. The sodium carbonate catalyzed xerogels presented specific surface areas BET of 474 m2/g. Partial replacement of sodium carbonate by nickel acetate allowed the increase of the specific area until 694m2/g. A sensitivity analysis of the iodine adsorption shows that the ratio R/C and% Ni have positive effect on the increase in surface area of the support.
|Abstract
= 129 veces | PDF (ESPAÑOL (ESPAÑA))
= 129 veces|

Downloads

Download data is not yet available.

Author Biographies

Jaime Ávila, National University of Colombia

School of Processes and Energy, National University of Colombia. Medellin Colombia

Diego Camargo-Trillos, National University of Colombia

School of Processes and Energy, National University of Colombia. Medellin Colombia

Elizabeth Pabón, National University of Colombia

School of Chemistry, National University of Colombia. Medellin Colombia

Farid Chejne, National University of Colombia

School of Processes and Energy, National University of Colombia. Medellin Colombia

References

C. Moreno-Castilla, M. B. Dawidziuk, F. Carrasco-Marín, and Z. Zapata-Benabithe. “Surface characteristics and electrochemical capacitances of carbon aerogels obtained from resorcinol and pyrocatechol using boric and oxalic acids as polymerization catalysts,” Carbon, vol. 49, no. 12, pp. 3808–3819, 2011. DOI: https://doi.org/10.1016/j.carbon.2011.05.013

D. A. Camargo, “Modelamiento de adsorción y desorción de compuestos orgánicos volátiles COVssobre materiales microporosos para el tratamiento y recuperación de efluentes provenientes de procesos industriales.” Tesis de Maestría en Ingeniería Química.Universidad Nacional de Colombia, Medellín, 2011.

J. Z. H. Sun, H. Wang, “Preparation and characterization of nickel–titanium composite xerogel catalyst for CO2reforming of CH4” Applied Catalysis B: Environmenta, vol. 73, pp. 158–165, 2007. DOI: https://doi.org/10.1016/j.apcatb.2006.07.019

A. H. Moreno, A. Arenillas, E. G. Calvo, J. M. Bermúdez, and J. a. Menéndez.“Carbonisation of resorcinol–formaldehyde organic xerogels: Effect of temperature, particle size and heating rate on the porosity of carbon xerogels,” Journal of Analytical and Applied Pyrolysis, vol. 100, pp. 111–116, Mar. 2013. DOI: https://doi.org/10.1016/j.jaap.2012.12.004

S. Morales-Torres, F. J. Maldonado-Hódar, A. F.Pérez-Cadenas, and F. Carrasco-Marín, “Structural characterization of carbon xerogels: From film to monolith,” Microporous and Mesoporous Materials, vol. 153, pp. 24–29, 2012. DOI: https://doi.org/10.1016/j.micromeso.2011.12.022

K. Kraiwattanawong, H. Tamon, and P. Praserthdam, “Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol and formaldehyde via subcritical drying,” Microporous and Mesoporous Materials, vol. 138, pp. 8–16, 2011. DOI: https://doi.org/10.1016/j.micromeso.2010.10.001

D. F. Jiménez, “Aerogeles Monolíticos de carbonocomo adsorbentes para la eliminación de compuestos orgánicos volátiles (BTX),” Universidad de Granada, 2006.

C. Moreno-Castilla, F. J. Maldonado-Hódar,A.F. Perez-Cadenas.“Physicochemical Surface Properties of Fe, Co, Ni , and Cu-Doped Monolithic OrganicAerogels,” Langmuir, vol. 19, no. 20, pp. 5650–5655, 2003. DOI: https://doi.org/10.1021/la034536k

Z. Liu, C. Lv, and X. Tan, “One-pot synthesis of Fe, Co and Ni-doped carbon xerogels and their magnetic properties,” Journal of Physics and Chemistry of Solids, vol. 74, no. 9, pp. 1275–1280, 2013. DOI: https://doi.org/10.1016/j.jpcs.2013.04.004

C. Moreno-Castilla and F. J. Maldonado-Hódar, “Carbon aerogels for catalysis applications: An overview,” Carbon, vol. 43, no. 3, pp. 455–465, 2005. DOI: https://doi.org/10.1016/j.carbon.2004.10.022

X. Lu, J. Shen, H. Ma, B. Yan, Z. Li, M. Shi, and M. Ye, “A cost-effective way to maintain metal-doped carbon xerogels and their applications on electric double-layer capacitors,” Journal of Power Sources, vol. 201, pp. 340–346, 2012. DOI: https://doi.org/10.1016/j.jpowsour.2011.10.099

L. Zubizarreta, J. A. Menéndez, N. Job, J. P. Marco-Lozar, J. P. Pirard, J.J. Pis, A. Linares-Solano, D. Cazorla-Amorós, and A. Arenillas, “Ni-doped carbon xerogels for H2 storage,” Carbon, vol. 48,no. 10, pp. 2722–2733, 2010. DOI: https://doi.org/10.1016/j.carbon.2010.03.068

S. Chandra, S. Bag, R. Bhar, and P. Pramanik, “Effect of transition and non-transition metals during the synthesis of carbon xerogels,” Microporous and Mesoporous Materials, vol. 138, no. 1–3, pp. 149–156, 2011. DOI: https://doi.org/10.1016/j.micromeso.2010.09.012

J. M. Skowroński and M. Osińska, “Effect of nickel catalyst on physicochemical properties of carbon xerogels as electrode materials for supercapacitor,” Current Applied Physics, vol. 12, no. 3, pp. 911–918, 2012. DOI: https://doi.org/10.1016/j.cap.2011.12.009

Published

2014-05-19

How to Cite

Ávila, J., Camargo-Trillos, D., Pabón, E., & Chejne, F. (2014). Revista Colombiana De Materiales, (5), 193–199. https://doi.org/10.17533/udea.rcm.19451