.
DOI:
https://doi.org/10.17533/udea.rcm.19451Palavras-chave:
Xerogeles de carbono, Impregnación, NíquelResumo
.
Downloads
Referências
C. Moreno-Castilla, M. B. Dawidziuk, F. Carrasco-Marín, and Z. Zapata-Benabithe. “Surface characteristics and electrochemical capacitances of carbon aerogels obtained from resorcinol and pyrocatechol using boric and oxalic acids as polymerization catalysts,” Carbon, vol. 49, no. 12, pp. 3808–3819, 2011. DOI: https://doi.org/10.1016/j.carbon.2011.05.013
D. A. Camargo, “Modelamiento de adsorción y desorción de compuestos orgánicos volátiles COVssobre materiales microporosos para el tratamiento y recuperación de efluentes provenientes de procesos industriales.” Tesis de Maestría en Ingeniería Química.Universidad Nacional de Colombia, Medellín, 2011.
J. Z. H. Sun, H. Wang, “Preparation and characterization of nickel–titanium composite xerogel catalyst for CO2reforming of CH4” Applied Catalysis B: Environmenta, vol. 73, pp. 158–165, 2007. DOI: https://doi.org/10.1016/j.apcatb.2006.07.019
A. H. Moreno, A. Arenillas, E. G. Calvo, J. M. Bermúdez, and J. a. Menéndez.“Carbonisation of resorcinol–formaldehyde organic xerogels: Effect of temperature, particle size and heating rate on the porosity of carbon xerogels,” Journal of Analytical and Applied Pyrolysis, vol. 100, pp. 111–116, Mar. 2013. DOI: https://doi.org/10.1016/j.jaap.2012.12.004
S. Morales-Torres, F. J. Maldonado-Hódar, A. F.Pérez-Cadenas, and F. Carrasco-Marín, “Structural characterization of carbon xerogels: From film to monolith,” Microporous and Mesoporous Materials, vol. 153, pp. 24–29, 2012. DOI: https://doi.org/10.1016/j.micromeso.2011.12.022
K. Kraiwattanawong, H. Tamon, and P. Praserthdam, “Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol and formaldehyde via subcritical drying,” Microporous and Mesoporous Materials, vol. 138, pp. 8–16, 2011. DOI: https://doi.org/10.1016/j.micromeso.2010.10.001
D. F. Jiménez, “Aerogeles Monolíticos de carbonocomo adsorbentes para la eliminación de compuestos orgánicos volátiles (BTX),” Universidad de Granada, 2006.
C. Moreno-Castilla, F. J. Maldonado-Hódar,A.F. Perez-Cadenas.“Physicochemical Surface Properties of Fe, Co, Ni , and Cu-Doped Monolithic OrganicAerogels,” Langmuir, vol. 19, no. 20, pp. 5650–5655, 2003. DOI: https://doi.org/10.1021/la034536k
Z. Liu, C. Lv, and X. Tan, “One-pot synthesis of Fe, Co and Ni-doped carbon xerogels and their magnetic properties,” Journal of Physics and Chemistry of Solids, vol. 74, no. 9, pp. 1275–1280, 2013. DOI: https://doi.org/10.1016/j.jpcs.2013.04.004
C. Moreno-Castilla and F. J. Maldonado-Hódar, “Carbon aerogels for catalysis applications: An overview,” Carbon, vol. 43, no. 3, pp. 455–465, 2005. DOI: https://doi.org/10.1016/j.carbon.2004.10.022
X. Lu, J. Shen, H. Ma, B. Yan, Z. Li, M. Shi, and M. Ye, “A cost-effective way to maintain metal-doped carbon xerogels and their applications on electric double-layer capacitors,” Journal of Power Sources, vol. 201, pp. 340–346, 2012. DOI: https://doi.org/10.1016/j.jpowsour.2011.10.099
L. Zubizarreta, J. A. Menéndez, N. Job, J. P. Marco-Lozar, J. P. Pirard, J.J. Pis, A. Linares-Solano, D. Cazorla-Amorós, and A. Arenillas, “Ni-doped carbon xerogels for H2 storage,” Carbon, vol. 48,no. 10, pp. 2722–2733, 2010. DOI: https://doi.org/10.1016/j.carbon.2010.03.068
S. Chandra, S. Bag, R. Bhar, and P. Pramanik, “Effect of transition and non-transition metals during the synthesis of carbon xerogels,” Microporous and Mesoporous Materials, vol. 138, no. 1–3, pp. 149–156, 2011. DOI: https://doi.org/10.1016/j.micromeso.2010.09.012
J. M. Skowroński and M. Osińska, “Effect of nickel catalyst on physicochemical properties of carbon xerogels as electrode materials for supercapacitor,” Current Applied Physics, vol. 12, no. 3, pp. 911–918, 2012. DOI: https://doi.org/10.1016/j.cap.2011.12.009