Carbonated hydroxyapatite, an option as biomaterials for implants: a review of the state of the art
DOI:
https://doi.org/10.17533/udea.rcm.26893Keywords:
stoichiometric hydroxyapatite, carbonated hydroxyapatite, biocompatibility, biodegradationAbstract
In the last 10 years, the research has been focused on the biomaterials development for bone tissue regeneration. Calcium phosphate are commonly used for this application due to its chemical composition and structure are similar to the mineral phase of the natural bone. The stoichiometric hydroxyapatite (HAp) is the reference material used in the biomedical engineering due to it has chemical stability and it has a very rigid structure, it has a very low reabsorption kinetic in a biological fluid as well. Additionally, its lowmechanical properties limits their application. According to this, the searching to obtain a material as similar as possible to the natural bone, it had been focused to the study of carbonated hydroxyapatite (HAC), which is derived from the stoichiometric hydroxyapatite (HAp) and it counts with important reports in biocompatibility, osteoinduction, osteconduction and biodegradation, making to this a biomaterial of great potential for uses in tissue engineering. The objective of this paper is to provide a review of the information reported regarding the use of carbonated hydroxyapatite (HAC) as implant material; in this order of ideas, the physico-chemical, structural and morphological properties will be mentioned, as well as the synthesis methods, and techniques to characterize it.
Downloads
References
S. V. Dorozhkin, “A detailed history of calcium orthophosphates from 1770s till 1950,” Mater. Sci. Eng. C, vol. 33, no. 6, pp. 3085–3110, 2013.
L. A. González, G. M. Vázquez, and J. F. Molina, “Epidemiología de la osteoporosis,” Rev. Colomb. Reumatol., vol. 16, no. 1, pp. 61–75, 2009.
Z. Zyman and M. Tkachenko, “CO2 gas-activated sintering of carbonated hydroxyapatites,” J. Eur. Ceram. Soc., vol. 31, no. 3, pp. 241–248, 2011.
A. M. C. Barradas, H. Yuan, J. van der Stok, B. Le Quang, H. Fernandes, A. Chaterjea, M. C. H. Hogenes, K. Shultz, L. R. Donahue, C. van Blitterswijk, and J. de Boer, “The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice,” Biomaterials, vol. 33, no. 23, pp. 5696–5705, 2012.
S. V Dorozhkin, “Calcium Orthophosphate-Based Bioceramics,” Materials (Basel)., vol. 6, pp. 3840–3942, 2013.
S. V. Dorozhkin, “Biphasic, triphasic and multiphasic calcium orthophosphates,” Acta Biomater., vol. 8, no. 3, pp. 963–977, 2012.
W. R. Moore, S. E. Graves, and G. I. Bain, “Synthetic bone graft substitutes.,” ANZ J. Surg., vol. 71, no. 6, pp. 354–361, 2001.
C. Peniche, Y. Solís, N. Davidenko, and R. García, “Materiales compuestos de quitosana e hidroxiapatita,” Biotecnol. Apl., vol. 27, pp. 192–201, 2010.
D. Tadic, F. Peters, and M. Epple, “Continuous synthesis of amorphous carbonated apatites,” Biomaterials, vol. 23, pp. 2553–2559, 2002.
E. Champion, “Sintering of calcium phosphate bioceramics,” Acta Biomater., vol. 9, no. 4, pp. 5855–5875, 2013.
E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, “Carbonated hydroxyapatite as bone substitute,” J. Eur. Ceram. Soc., vol. 23, no. 15, pp. 2931–2937, 2003.
J. P. Lafon, E. Champion, and D. Bernache-Assollant, “Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition,” J. Eur. Ceram. Soc., vol. 28, no. 1, pp. 139–147, 2008.
F. C. M. Driessens, “The mineral in bone, dentin and tooth enamel,” Bull. des Sociétés Chim. Belges, vol. 89, no. 8, pp. 663–689, 1980.
J.-P. Lafon, “Synthese, stabilite thermique et frittage d’hydroxyapatites carbonatees,” p. 208, 2004.
J. C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, vol. 18. 1994.
S. R. Radin and P. Ducheyne, “The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation,”J. Biomed. Mater. Res., vol. 27, no. 1, pp. 35–45, 1993.
D. G. A. Nelson, “The influence of carbonate on the atomic structure and reactivity of hydroxyapatite,” J. Dent. Res., vol. 60, no. 3 suppl, pp. 1621–1629, 1981.
J. Barralet, M. Akao, and H. Aoki, “Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats,” J. Biomed. Mater. Res., vol. 49, no. 2, pp. 176–182, 2000.
G. Bonel., “Contribution à l’étude de la carbonatation des apatites - 3 - Synthèse et étude des propriétés physico-chimiques d'apatites carbonatée dans deux types de sites. Evolution des spectres IR en fonction de la composition des apatites.,” Ann. Chim., p. 7: 140 – 144., 1972.
M. Vignoles-Montrejaud, “Contribution à l’étude des apatites carbonatées du type B,” Institut national polytechnique Toulouse, toulouse, 1984.
J. Merry., “Preparation and characterisation of carbonate hydroxyapatite,” Queen Mary and Westfield college, london, 2000.
Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, and Y. Iwayama, “Sintered carbonated apatites as bioresorbable bone substitutes,” J. Biomed. Mater. Res., vol. 39, p. 603, 1998.
A. A. Baig, J. L. Fox, R. a. Young, Z. Wang, J. Hsu, W. I. Higuchi, A. Chhettry, H. Zhuang, and M. Otsuka, “Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters,” Calcif. Tissue Int., vol. 64, no. 5, pp. 437–449, 1999.
C. Carretero, C. Bernal, M. Lucía Torres, K. Jamuna Thevi, C. de Materiales, F. Ayad Zakaria, and J. Mikán, “Evaluación de la biocompatibilidad de apatita carbonatada de síntesis seca por medio del cultivo de células osteoprogenitoras de porcino,” revista, vol. 17, no. 2, pp. 231–244, 2009.
J. C. Labarthe and G. Bonel., “Sur la structure et les proprités des apatites carbonatées de type B phospho-calciques.,” Ann. Chim., vol. 8, pp. 289 – 301., 1973.
R. Legros, N. Balmain, and E. Al., “Structure and composition of the mineral phase of periosteal bone.,” J. Chem. Res., p. S: 8 – 9., 1986.
D. W. Holcomb and R. A. Young, “Thermal Decomposition of Human Tooth Enamel,” Calcif. Tissue Int, vol. 31, pp. 189–201, 1980.
A. V. Burgess, B. J. Story, D. La, W. R. Wagner, and J. P. LeGeros, “Highly crystalline MP-1 hydroxylapatite coating Part I: In vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings,” Clin. Oral Implants Res., vol. 10, no. 4, pp. 245–256, 1999.
I. R. Gibson and W. Bonfield, “Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite,” J. Biomed. Mater. Res., vol. 59, no. 4, pp. 697–708, 2002.
R. Z. Legeros, “crystallography studies of the carbonate substitution in the apatite structure,” university new york, 1979.
C. Vignoles., “Contribution à l’étude de l'influence des ions alcalins sur la carbonatation dans les sites de type B des apatites phospho-calciques,” 1973.
S. Raynaud, E. Champion, J. P. Lafon, and D. Bernache-Assollant, “Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics,” Biomaterials, vol. 23, pp. 1081–1089, 2002.
J. E. Barralet, “Processing and sintering of carbonate hydroxyapatite,” London, 1995.
Y. Suetsugu and J. Tanaka, “crystal growth of carbonate apatite using a CaCO3 flux,” J. Mater. Sci. Mater. Med., vol. 10, pp. 561–566, 1999.
L. G. Ellies, D. G. Nelson, and J. D. Featherstone, “Crystallographic structure and surface morphology of sintered carbonated apatites.,” Journal of biomedical materials research, vol. 22. pp. 541–553, 1988.
Y. Doi, T. Koda, M. Adachi, N. Wakamatsu, T. Goto, H. Kamemizu, Y. Moriwaki, and Y. Suwa, “Pyrolysis-gas chromatography of carbonate apatites used for sintering,” in Journal of Biomedical Materials Research, 1995, vol. 29, no. 11, pp. 1451–1457.
P.V. Riboud, “Composition et stabilité des phases à structure d’apatite dans le système CaO-P2O5-Oxyde de fer-H2O à haute température.,” Ann. Chim., p. Fr. 8: 381–390., 1973.
J. Lafon, E. Champion, and D. Bernache Assollant, “Thermal behaviour of synthetic carbonate hydroxyapatite in various atmospheres: experimental approach and thermodynamical modelling, in preparation,” 2007.
A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, “Processing routes to macroporous ceramics: A review,” J. Am. Ceram. Soc., vol. 89, no. 6, pp. 1771–1789, 2006.
N. M. Pareja, D. M. Escobar, C. P. Ossa, and A. Echavarría, “Síntesis y caracterización de hidroxiapatita microporosa, comparación con un producto comercial,” Rev. Fac. Ing., no. 43, pp. 67–76, 2008.
M. Espanol, R. a. Perez, E. B. Montufar, C. Marichal, A. Sacco, and M. P. Ginebra, “Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications,” Acta Biomater., vol. 5, no. 7, pp. 2752–2762, 2009.
G. Bonel., “Contribution à l’étude de la carbonatation des apatites - 1- Synthèse et étude des propriétés physico-chimiques des apatites carbonatées du type A.,” Ann. Chim., vol. 7, pp. 65–88, 1972.
“ASTM C1424-04, "Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature.”.
“ASTM C1161-02c, ‘Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature.’”.
“ASTM C1273-05, ‘Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures.’”.