Assessment of amphibolite and pegmatite aggregates for the manufacture of concrete
DOI:
https://doi.org/10.17533/udea.rcm.340840Keywords:
rock aggregates, petrography, mechanical properties, concrete, ASTM standardsAbstract
In the present work petrographic, physical, mechanical and chemical characterization of rock aggregates extracted in the Tritupisvar Ltda quarry, Santa Marta (Colombia) are performed. Petrographically analyzed samples correspond to amphibolite (SM-1) and pegmatite (SM-2). The specific gravity has values between 2,9 (amphibolite) and 2,6 (pegmatite) g/cm3. The percentage of water absorption varies from 0,64 to 0,81%, with higher percentage in pegmatite. The abrasion values of 29,78 and39,66% were obtained for amphibolite and pegmatite, respectively, indicating good strength. The organic matter content is harmless. The affectation due to Mg2SO4 attack varies from 0,01 to 0,33%, which suggests a high resistance in highly corrosive conditions, although it is higher in the amphibolite-based mixtures. The compressive strength values are in the range of 16,28-18,63 MPa for the amphibolite (SM-1)-based concrete, 16,34-17,89 MPa for the pegmatite (SM-2)-based concrete, and 15,85-17,70 MPa for the mixture (SM-1+SM-2)-based concrete with ratio 50:50, which reveals that the geomechanical behavior of concrete cylinders is satisfactory, although this material cannot be considered as a structural element. The results allow us to state that the evaluated aggregates are suitable for the preparation of concretes as well as for suitable designs.
Downloads
References
Parekh, D.N., Modhera, C.D. “Characterization of recycled aggregate concrete”, International Journal of Advanced Engineering Technology, vol. 2, no. 4, pp. 321-330, 2011.
Van Damme, H. “Concrete material science: Past, present, and future innovations”, Cement and Concrete Research, vol. 112, pp. 5-24, 2018.
Teye-Buertey, J.I, Wilberforce-Offei, S., Adjei-Kumi, T., Atsrim, F. “Effect of aggregates minerology on the strength of concrete: Case study of three selected quarry products in Ghana”, Journal of Civil Engineering and Construction Technology,vol. 9(1), pp. 1-10, 2018.
Ngo, H.-T., Kaci, A., Kadri, E.-H., Ngo, T.T., Trudel, A., Lecrux, S. “Energy consumption reduction in concrete mixing process by optimizing mixing time”, Energy Procedia, vol. 139, pp. 810–816, 2017.
Piasta, W., Góra, J., Turkiewicz, T. “Properties and durability of coarse igneous rock aggregates and concretes”, Construction and Building Materials, vol. 126, pp. 119-129, 2016.
Leroy, M.N.L., Molay, T.G.G., Joseph, N., Colince, F.M., Bienvenu, N.J.M. “A Comparative Study of Concrete Strength Using Metamorphic, Igneous, and Sedimentary Rocks (Crushed Gneiss, Crushed Basalt, Alluvial Sand) as Fine Aggregate”, Journal of Architectural Engineering Technology, vol.6(1), pp. 1-6, 2017.
Özbek, A., Gül, M., Karacan, E., Alca, Ö. “Anisotropy effect on strengths of metamorphic rocks”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 10, pp. 164-175, 2018.
Mukhopadhyay, A.K., Neekhra, S., Zollinger, D.G. Preliminary characterization of aggregate coefficient of thermal expansion and gradation for paving concrete. Report No.FHWA/TX-05/0-1700-5, 109p, 2007.
Liu, H., Kou, S., Lindqvist, P.A., et al., Microscope Rock Texture Characterization and Simulation of Rock Aggregate Properties. Geological Survey of Sweden (SGU) Project 60-1362, 48p, 2005.
Muñoz, F., Mendoza, C.J. “La durabilidad en las estructuras de concreto reforzado desde la perspectiva de la norma española para estructuras de concreto”, Concreto y Cemento: Investigación y Desarrollo, vol. 4, no. 1, pp. 63-86, 2012.
Hudson, B. “Modification to the Fine Aggregate Angularity Test”. In: 7th Annual International Center for Aggregates Research Symposium, Austin, USA, 19-21 April, 1999.
Grattan-Bellew, P.E. “Microcrystalline quartz, undulatory extinction and the alkali-silica reaction”. In: 9th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), London, England, 27-31 July, 1992.
Wigum, B.J. Examination of microstructural features of Norwegian cataclastic rocks and their use for predicting alkali-reactivity in concrete. Engineering Geology, vol. 40, pp. 195-214, 1995.
Broekmans, M.A.T.M. The alkali-silica reaction: mineralogical and geochemical aspects of some Dutch concretes and Norwegian mylonites. PhD Thesis, University of Utrecht, 2002.
Broekmans, M.A.T.M. Deleterious Reactions of Aggregate With Alkalis in Concrete. In: Broekmans, M.A.T.M. y Pollmann, H. (Eds.), Applied Mineralogy of Cement & Concrete, Reviews in Mineralogy & Geochemistry, vol. 74, pp. 279-364, 2012.
Ng, T.F., Yeap, E.B. “Potential alkali-silica reaction in aggregate of deformed granite”, Bulletin of the Geological Society of Malaysia, vol. 53, pp. 81-88, 2007.
Ng, T.F. “Microstructural characteristics of some alkali-aggregate reactive granites of Peninsular Malaysia”. In: National Geoscience Conference, Selangor, Malaysia, 11-12 June, 2010.
Velasco-Torres, A., Aejos, P., Soriano, J. “Comparative study of the alkali-silica reaction (ASR) in granitic aggregates”, Estudios Geológicos, vol. 66, no. 1, pp. 105-114, 2010.
Locati, F., Baldo, E., Marfil, S., et al., “Metamorphic rocks from Córdoba (Argentina) and the alkali-silica reaction”. In: 11th International Association of Engineering Geology Congress, Auckland, New Zeland, 5- 10 September, 2010.
Locati, F., Marfil, S., Baldo, E. “Effect of ductile deformation of quartz-bearing rocks on the alkali-silica reaction”, Engineering Geology, vol. 116, no. 1-2, pp. 117-128, 2010.
Hongn, F., Mon, R., Petrinovic, I.A., et al., Effect of ductile deformation of quartz-bearing rocks on the alkali-silica reaction”, Engineering Geology, vol. 116, no. 1-2, pp. 117-128, 2010.
Fernandes, I., Broekmans, M.A.T.M., Nixon, P., et al., “Alkali-silica reactivity of some common rock types – A Global Petrographic Atlas”, Quarterly Journal of Engineering Geology and Hydrogeology, vol. 46, pp. 215–220, 2013.
Ng, T.F., Raj, J.K., Ghani, A.A. “Potential Alkali-Reactivity of Granite Aggregates in the Bukit Lagong Area, Selangor, Peninsular Malaysia”, Sains Malaysiana, vol. 42, no. 6, pp. 773–781, 2013.
Gomes, D.D., Conceição, H., Carvalho, V.A., et al., “Influence of granitic aggregates from northeast Brazil on the alkali-aggregate reaction”, Materials Research, vol. 17, no. 1, pp. 51-58, 2014.
Fernandes, I., Broekmans, M.A.T.M., Noronha, F. “Petrography and geochemical analysis for the forensic assessment of concrete damage”. In: Ritz, K, Dawson, L, Miller, D. (Eds.): Criminal and Environmental Soil Forensics. Springer Verlag, Heidelberg, pp. 163-180, 2008.
Palbol, L. Optimización de los agregados para concreto. Construcción y Tecnología, México, 9 (100), 1996.
Quiroga, P.N., Fowler, D.W. The effects of aggregates characteristics on the performance of Portland cement concrete. Research Report ICAR – 104-1F, The University of Texas at Austin, Austin, 2003.
Tschanz, C.M., Jimeno, A., Cruz, B. Geology of the Sierra Nevada de Santa Marta (Colombia) - Informe 1829, INGEOMINAS, Bogotá, 1969.
Tschanz, C.M., Marvin, R.F., Cruz, B.J., et al., “Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia”, Geological Society of America Bulletin, vol. 85, no. 2, pp. 273-284, 1974.
Figueroa, N.P., Mendoza, S.P., Ríos, C.A., et al., “Characterization and testing of rock aggregates of the Santa Marta Batholith, (Colombia)”, Revista ION, vol. 27, no. 2, pp. 87-104, 2014.
Google Earth, [Online], Available: http://earth.google.com, [Accessed: 26-Jul-2018].
Kodolányi, J., Pettke, T., Spandler, C., et al., “Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones”, Journal of Petrology, vol. 53, no. 2, pp. 235-270, 2012.
Deschamps, F., Godarda, M., Guillot, S., et al., “Geochemistry of subduction zone serpentinites: A review”, Lithos, vol. 178, pp. 96-127, 2013.
Brydie, J.R. Geology and geochemistry of magnesite occurrences, Akamas Area, Northwest Cyprus, Master thesis, Memorial University of Newfoundland, 1995.
ASTM D75/D75M. Standard Practice for Sampling Aggregates. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2009.
NTC 129. Método para la toma de muestras de agregados. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 2019.
Gaitan, S. Análisis mineralógico y examen petrográfico de agregado fino para concreto de tres bancos de la región central del país. Tesis de pregrado, Universidad de San Carlos de Guatemala, 1996.
ASTM C295/C295M. Standard Guide for Petrographic Examination of Aggregates for Concrete. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2012.
NTC 3773. Guía para la inspección petrográfica de agregados para concreto. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 1995.
ASTM C136/C136M. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2014.
NTC 77.Método de ensayo para el análisis de los agregados finos y gruesos Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 1998.
ASTM C566. Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2013.
NTC 1776. Método de ensayo para determinar por secado el contenido total de humedad de los agregados. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 1994.
ASTM C535. Standard Test Method for Resistance to Degradation of Large Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2012.
NTC 93. Método de ensayo para determinar la resistencia al desgaste por abrasión e impacto de agregados gruesos mayores a 19 mm, utilizando la máquina de Los Ángeles. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 2013.
ASTM C29/C29M. Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2009.
NTC 92. Método de ensayo para determinar la densidad volumétrica (masa unitaria) y vacíos en agregados. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 2019.
ASTM C127. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2012.
NTC 176. Método de ensayo para determinar la densidad y la absorción del agregado grueso. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 1995.
ASTM C786/C786M. Standard Test Method for Fineness of Hydraulic Cement and Raw Materials by the 300-μm (No. 50), 150-μm (No. 100), and 75-μm (No. 200) Sieves by Wet Methods. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2017.
NTC 226. Método de ensayo para determinar la finura del cemento hidráulico por medio de los tamices 75 μm (M200) y 150 μm (M100). Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 1998.
ASTM C128.Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2015.
INV E-222. Gravedad específica y absorción de agregados finos. Instituto Nacional de Vías - INVIAS, Colombia, 2007.
ASTM C40/C40M. Standard Test Method for Organic Impurities in Fine Aggregates for Concrete. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2011.
NTC 127. Método de ensayo para determinar las impurezas orgánicas en agregado fino para concreto. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 2000.
ASTM C39/C39M. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2012.
NTC 673. Método de ensayo de resistencia a la compresión de especímenes cilíndricos de concreto. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 2010.
ASTM C88. Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate). American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2005.
NTC 126. Método de ensayo para determinar la solidez (salinidad) de agregados mediante el uso de sulfato de sodio o sulfato de magnesio. Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 2016.
ASTM C289, Standard Test Method for Potential Alkali Silica Reactivity of Aggregates (Chemical Method). American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2007.
NTC 175. Método químico para determinar la reactividad potencial álcali-sílice de los agregados.Instituto Colombiano de Normas Técnicas – ICONTEC, Colombia, 1996.
González, A., Villa, E.A. Caracterización de agregados pétreos de la cantera Tritupisvar para su uso en la elaboración de concreto, Santa Marta, Colombia, Tesis de pregrado, Universidad Industrial de Santander, 2012.
Kretz, R. “Symbols for rock-forming minerals”, American Mineralogist, vol. 68, pp. 277-279, 1983.
Ferreira, D.A., Torres, K.M. Caracterización física de agregados pétreos para concretos: Caso Vista Hermosa (Mosquera) y Mina Cemex (Apulo). Tesis de pregrado, Universidad Católica de Colombia, 2014.
Kazi, A., Al-Mansour, Z.R. “Influence of geological factors on abrasion and soundness characteristics of aggregates”, Engineering Geology, vol. 15, no. 3-4, pp. 195-203, 1980.
Torgal, F.P., Castro-Gomes, J.P. “Influence of physical and geometrical properties of granite and limestone aggregate on the durability of a C20/25 strength class concrete”, Construction and Building Materials, vol. 20, no. 10, pp. 1079-1088, 2006.
Figueroa, N.P., Mendoza, S.P. Estudio Petrográfico y Mineralógico de granitoides y rocas afines utilizados como agregados pétreos en la cantera de explotación “Manuel Pertuz” del Municipio de Santa Marta (MAGDALENA), Tesis de pregrado, Universidad Industrial de Santander,2012.
Ichikawa, T., Miura, M. “Modified model of alkali-sil ica reaction”, Cement and Concrete Research, vol. 37, no. 9, pp. 1291-1297, 2007.
Tamrakar, N.K., Paudel, L.P. “Petrographic examination of ledge rocks aided by microscopic and X-ray diffraction analyses for alkali-silica reactivity”, Bulletin of the Department of Geology, vol. 14, pp. 21-28, 2011.
Monnin, Y., Dégrugilliers, P., Bultee, D., et al., “Petrography study of two siliceous limestones submitted to alkali-silica reaction”, Cement and Concrete Research, vol. 36, no. 8, pp. 1460-1466, 2006.
ASTM C1778. Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete. American Society for Testing Materials, West Conshohocken, Pennsylvania, PA 19428, USA, 2014.
INTE C278. Guía para reducir el riesgo de la reacción perjudicial álcali-agregado en el concreto. Instituto Nacional de Tecnologías de la Comunicación – INTECO, Colombia, 2017.
Broekmans, M.A.T.M. “Structural properties of quartz and their potential role for ASR”, Materials Characterization, vol. 53, pp. 129-140, 2004.
West, G. “A note on undulatory extinction of quartz in granite”, Engineering Geology, vol. 24, pp. 159-165, 1991.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista Colombiana de Materiales
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.