LASER POWDER BED FUSION OFAFe-BASEDMETALLIC GLASS POWDER: AN EXPLORATORY STUDY
DOI:
https://doi.org/10.17533/RCM/udea.rcm.n19a04Keywords:
Additive manufacturing, Metallic glass, Selective laser melting, Powder bed, AmorphousAbstract
Currently, the fabrication of bulk components from metallic glasses and/or non-equilibrium alloys is challenging due to the cooling conditions required to obtain a complete amorphous state and/or a particular set of phases. Some additive manufacturing technologies, such as direct metal laser sintering (DMLS), may offer an alternative for manufacturing metallic glass components from 100% amorphous powders. However, when these materials are processed by additive manufacturing, the main challenge is to maintain the initial powder’s amorphous content in the final parts. The present work used a commercial Fe-based metallic glass to carry out an exploratory study about the influence of the main DMLS process parameters on the ability of this material to form consolidated parts. The parameters studied here were laser power, scanning speed, and volumetric energy density. In addition, the X-ray diffraction technique was used to characterize the phases obtained in the manufactured parts. This study suggests that the manufacturing of Fe-based metallic glass parts is possible, but the formation of the parts is favored in a specific range of energy densities employed during the process.
Downloads
References
F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, P. Fino, “Overview on additive manufacturing technologies”, Proceedings of the IEEE, vol. 105, no. 4, pp. 593-612, 2017
B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, A. Du Plessis, “Metal additive manufacturing in aerospace: A review”. Materials & Design, vol. 209, pp. 110008, 2021
A. J. Sheoran, A. Chandra, H. Kumar, Biomedical Applications of Additive Manufacturing, Recent Advances in Mechanical Engineering, Springer, 2021
V. Dhinakaran, R. Ramgopal, Additive Manufacturing and Its Need, Role, Applications in the Automotive Industry. In Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, IGI Global, 2021
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, “Additive manufacturing of metals” Acta Materialia, vol. 117, pp. 371-392, 2016
Y. Zhang, W. Jarosinski, Y. G. Jung, J. Zhang, Additive manufacturing processes and equipment. In Additive Manufacturing, Butterworth-Heinemann, 2018
C, Yan, Y. Shi, L. Zhaoqing, S. Wen, Q. Wei, Selective Laser Sintering Additive Manufacturing Technology, Academic Press, 2020
V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, A review on powder bed fusion technology of metal additive manufacturing. In Additive manufacturing handbook, CRC Press, 2017
N. Sohrabi, J. Jhabvala, R. E. Logé, “Additive manufacturing of bulk metallic glasses—process, challenges and properties: a review”, Metals, vol. 11, no. 8, pp. 1279, 2021
A. L. Greer, Metallic glasses, Physical metallurgy, 2017
R. Aversa, D. Parcesepe, R. V. Petrescu, F. Berto, G. Chen, F. I. Petrescu, A. Apicella, “Processability of bulk metallic glasses”, American Journal of Applied Sciences, vol. 14, no. 2, pp. 294-301, 2017
R. Nowosielski, R. Babilas, “Fabrication of bulk metallic glasses by centrifugal casting method”, Journal of Achievements in Materials and Manufacturing Engineering, vol. 20, no. 1-2, pp. 487-490, 2007
A. K. Jassim, A. S. Hammood, “Sustainable manufacturing process for bulk metallic glasses production using rapid solidification with melt spinning technique”, presented at International Conference on Material Science and Material Engineering MSME2014, 2017
N. Ciftci, N. Yodoshi, S. Armstrong, L. Mädler, V. Uhlenwinkel, “Processing soft ferromagnetic metallic glasses: on novel cooling strategies in gas atomization, hydrogen enhancement, and consolidation”, Journal of Materials Science & Technology, 59, 26-36, 2020
S. Gravier, G. Kapelski, M. Suéry, J. J. Blandin, J. J, “Thermoplastic forming of bulk metallic glasses”, International Journal of Applied Glass Science, vol. 3, no. 2, pp. 180-187, 2012
D. G. Mastropietro, J. A. Moya, “Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models”, Computational Materials Science, vol. 188, pp. 110230, 2021
G. Kumar, A. Desai, J. Schroers, “Bulk metallic glass: the smaller the better”, Advanced materials, vol. 23, no. 4, pp. 461-476, 2011
J. E. Garcia-Herrera, J. Henao, D. G. Espinosa-Arbelaez, J. M. Gonzalez-Carmona, C. Felix-Martinez, R. Santos-Fernandez, J. Corona-Castuera, J. M. Alvarado-Orozco, C. A. Poblano-Salas, “Laser Cladding Deposition of a Fe-based Metallic Glass on 304 Stainless Steel Substrates”, Journal of Thermal Spray Technology, vol. 31, no. 4, pp. 968-971, 2022
J. Henao, A. Concustell, S. Dosta, N. Cinca, I. G. Cano, J. M. Guilemany, “Influence of the substrate on the formation of metallic glass coatings by cold gas spraying”, Journal of Thermal Spray Technology, vol. 25, no. 5, pp. 992-1008, 2016
I. Yadroitsev, I. Smurov, “Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape”, Physics Procedia, vol. 5, pp. 551-560, 2010
J. M. Z. Pérez, J. Corona-Castuera, C. Poblano-Salas, J. Henao, A. H. Hernández, “On the manufacturability of Inconel 718 thin-walled honeycomb structures by laser powder bed fusion”, Rapid Prototyping Journal, 2021
MDI, JADE 6 (Computer software), Materials Data, Livermore, CA, USA, 2002
S. D. Gates-Rector, T. N. Blanton, “The Powder Diffraction File: A Quality Materials Characterization Database”, Powder Diffr., vol. 34, pp. 352-60, 2019
T. Fedina, J. Sundqvist, J. Powell, A. F. Kaplan, “A comparative study of water and gas atomized low alloy steel powders for additive manufacturing”, Additive Manufacturing, vol. 36, pp. 101675, 2020
S. Lagutkin, L. Achelis, S. Sheikhaliev, V. Uhlenwinkel, V. Srivastava, (2004), “Atomization process for metal powder”, Materials Science and Engineering: A, vol. 383, no. 1, pp. 1-6, 2004
J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury, K. Hono, K, “Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass”, Scripta materialia, vol. 53, no. 2, pp. 165-169, 2005
J. C. Qiao, J. M. Pelletier, “Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC)”, Journal of non-crystalline solids, vol. 357, no. 14, pp. 2590-2594, 2011
F. Huyan, R. Larker, R. Rubin, P. Hedström, “Effect of solute silicon on the lattice parameter of ferrite in ductile irons”, ISIJ international, vol. 54, no. 1, pp. 248-250, 2014
G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, “Review of Fe-6.5 wt.% Si high silicon steel—A promising soft magnetic material for sub-kHz application”, Journal of Magnetism and Magnetic Materials, vol. 481, pp. 234-250, 2019
I. Ohnuma, S. Abe, S. Shimenouchi, T. Omori, R. Kainuma, K. Ishida, “Experimental and thermodynamic studies of the Fe–Si binary system”, ISIJ international, vol. 52, no. 4, pp. 540-548, 2012
J. H. Jang, I. G. Kim, H. K. D. H. Bhadeshia, “Substitutional solution of silicon in cementite: A first-principles study”, Computational Materials Science, vol. 44, no. 4, pp. 1319-1326, 2009
S. Ikhmayies, “Thermo-calc of the phase diagram of the Fe–Si system”, In TMS Annual Meeting & Exhibition, Springer, Cham, 2018
O. K. von Goldbeck, IRON—Binary Phase Diagrams, Cham, 1982
A. Forsberg, J Ågren, Thermodynamics, Phase Equilibria and Martensitic Transformation in Fe-Mn-Si Alloys, MRS Online Proceedings Library (OPL), 246, 1991
A. Concustell, J. Henao, S. Dosta, N. Cinca, I. G. Cano, J. M. Guilemany, “On the formation of metallic glass coatings by means of Cold Gas Spray technology”, Journal of Alloys and Compounds, vol. 651, pp. 764-772, 2015
S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, et al., “Processing metallic glasses by selective laser melting”, Mater Toda., vol. 16, pp. 37-41, 2013
H. Liu, Q. Jiang, J. Huo, Y. Zhang, W. Yang, X. Li, “Crystallization in additive manufacturing of metallic glasses: A review”, Additive Manufacturing, vol. 36, pp. 101568, 2020.
X. Y. Wang, Z. Liu, P. H. Chong, « Effect of overlaps on phase composition and crystalline orientation of laser-melted surfaces of 321 austenitic stainless steel”, Thin Solid Films, vol. 453–454, pp. 72–75, 2004
B. Zheng, Y. Zhou, J. E. Smugeresky, E. J. Lavernia, “Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping”, Metall Mater Trans; vol. 40, pp. 1235-1245, 2009
G. Yan, X. Lin, F. Liu, Q. Hu, L. Ma, et al., “Laser solid forming Zr-based bulk metallic glass”, Intermetallics, vol. 22, pp. 110-115, 2012
Y. Zhang, X. Lin, X. Gao, X. Su, S. Luo, W. Huang, “Crystallization mechanism of Zr55Cu30Al10Ni5 metallic glass in an extended range of heating rates”, Intermetallics, vol. 136, pp. 107256, 2021
T. Paul, A. Singh, K. C. Littrell, J. Ilavsky, S. P. Harimkar, “Crystallization mechanism in spark plasma sintered bulk metallic glass analyzed using small angle neutron scattering”, Scientific Reports, vol. 10, no. 1, pp. 1-11, 2020
J. J. Marattukalam, V. Pacheco, D. Karlsson, L. Riekehr, J. Lindwall, F. Forsberg, B. Hjörvarsson, “Development of process parameters for selective laser melting of a Zr-based bulk metallic glass”, Additive Manufacturing, vol. 33, pp. 101124, 2020
Ł. Żrodowski, B. Wysocki, R. Wróblewski, A. Krawczyńska, B. Adamczyk-Cieślak, J. Zdunek, W. Święszkowski, “New approach to amorphization of alloys with low glass forming ability via selective laser melting”, Journal of Alloys and Compounds, vol. 771, pp. 769-776, 2019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Colombiana de Materiales
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.