ESTUDIO DE LOS PARÁMETROS DE PROYECCIÓN TÉRMICA DE POLVOS CERÁMICOS, A PARTIR DE SIMULACIONES NUMÉRICAS

Authors

DOI:

https://doi.org/10.17533/RCM/udea.rcm.n20a06

Keywords:

Jets et Poudres, plasma spray, APS, simulation, YSZ

Abstract

Plasma spray process or APS (Atmospheric Plasma Spray) is a highly developed process widely used in the industry. Complementary computing tools allow the prediction and modeling of this kind of processes. This study was realized using the software "Jets and Powders" to simulate a plasma spray process to fabricate thermal barrier coatings of Yttria-stabilized zirconia (ZrO2 – Y2O3 8 wt.% (YSZ) and then comparisons were made regarding to bonth experimental data obtained by a sensor (Accuraspray G3C) and microstructural characterizations of the coatings. As a result, it was possible to establish the parameters of non-direct inputs of the software (turbulence model, thermal efficiency, and type of air barrier) that allow predicting the behavior of a plasma spray process that is done with a SinplexPro torch.

|Abstract
= 147 veces | PDF (ESPAÑOL (ESPAÑA))
= 85 veces|

Downloads

Download data is not yet available.

References

P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals. 2014. doi: 10.1007/978-0-387-68991-3.

L. Pawlowski, The science and engineering of thermal spray coatings, Second Edi. WILEY, 2008. doi: 10.1016/0263-8223(96)80006-7.

S. Semenov and B. Cetegen, “Spectroscopic temperature measurements in direct current arc plasma jets used in thermal spray processing of materials,” Journal of Thermal Spray Technology, vol. 10, no. 2, pp. 326–336, 2001, doi: 10.1361/105996301770349411.

T. H. Van Steenkiste et al., “Kinetic spray coatings,” Surf Coat Technol, vol. 111, no. 1, pp. 62–71, 1999, doi: 10.1016/S0257-8972(98)00709-9.

Y. P. Wan, V. Prasad, G.-X. Wang, S. Sampath, and J. R. Fincke, “Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes,” J Heat Transfer, vol. 121, no. 3, p. 691, 2008, doi: 10.1115/1.2826034.

M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, “Splat shapes in a thermal spray coating process: Simulations and experiments,” Journal of Thermal Spray Technology, vol. 11, no. 2, pp. 206–217, 2002, doi: 10.1361/105996302770348862.

H. Liu, E. J. Lavernia, and R. H. Rangel, “Numerical simulation of substrate impact and freezing of droplets in plasma spray processes,” J Phys D Appl Phys, vol. 26, no. 11, pp. 1900–1908, 1993, doi: 10.1088/0022-3727/26/11/010.

G. Delluc, H. Ageorges, B. Pateyron, and P. Fauchais, “Fast modelling of plasma jet and particle behaviours in spray conditions,” High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes), vol. 9, no. 2, pp. 211–226, 2005, doi: 10.1615/hightempmatproc.v9.i2.30.

V. Grigaitiene, V. Valinčius, and R. Keželis, “Measurement and numerical simulation of two-phase plasma flow in plasma spray process,” Lithuanian Journal of Physics, vol. 49, no. 1, pp. 91–96, 2009, doi: 10.3952/lithjphys.49104.

M. Ferrer, F. Vargas, and G. Pena, “Optimization of the parameters for obtaining zirconia-alumina coatings, made by flame spraying from results of numerical simulation,” Journal of Physics: Conference Series, vol. 935, no. 1, 2017, doi: 10.1088/1742-6596/935/1/012023.

H. Copete, F. Vargas, E. López, J. Gómez Pérez, and T. Ríos, “Improvement of the adhesion on Hydroxyapatite coatings produced by oxyfuel thermal spray from results of numerical simulation Mejoramiento de la adherencia en recubrimientos de Hidroxiapatita elaborados mediante proyección térmica oxiacetilénica, a partir,” Dyna, vol. 81, no. 184, pp. 1–2, 2014, doi: 10.15446/dyna.v84n203.59201.

F. Ben Ettouil, B. Pateyron, H. Ageorges, M. El Ganaoui, P. Fauchais, and O. Mazhorova, “Fast modeling of phase changes in a particle injected within a d.c plasma jet,” Journal of Thermal Spray Technology, vol. 16, no. 5–6, pp. 744–750, 2007, doi: 10.1007/s11666-007-9075-y.

O. Metco, “Material Product Data Sheet Nickel Cobalt Chromium Aluminum [ Tantalum , Hafnium Silicon ] Yttrium ( NiCoCrAl [ Ta , HfSi ] Y ) Thermal Spray Powders.” pp. 2–6, 2018.

J. Spišiak, M. Hartmanová, G. G. Knab, and S. Krcho, “Thermal properties of yttria-stabilized zirconia (YSZ),” J Eur Ceram Soc, vol. 11, no. 6, pp. 509–514, 1993, doi: 10.1016/0955-2219(93)90110-D.

O. Metco, “Material Product Data Sheet High Yttria Percentage Stabilized Zirconia Agglomerated and Plasma-Densified Thermal Spray Powders,” pp. 1–3, 2017.

D. F. Zambrano et al., “Thermal properties and phase stability of Yttria-Stabilized Zirconia (YSZ) coating deposited by Air Plasma Spray onto a Ni-base superalloy,” Ceram Int, vol. 44, no. 4, pp. 3625–3635, 2018, doi: 10.1016/j.ceramint.2017.11.109.

L. ZHU, N. ZHANG, C. CODDET, R. BOLOT, and H. LIAO, “Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying,” Surface Review and Letters, vol. 22, no. 05, p. 1550061, 2015, doi: 10.1142/s0218625x15500614.

G. Delluc, G. Mariaux, A. Vardelle, P. Fauchais, and B. Pateyron, “A Numerical Tool for Plasma Spraying Part I: Modelling of Plasma Jet and Particle Behaviour,” 16th International Symposium on Plasma Chemistry, pp. 1–6, 2003.

G. Delluc, G. Mariaux, and A. Vardelle, “A numerical tool for plasma spraying. Part II: Model of statistic distribution of alumina multi particle powder,” Proceedings of the 16th International Symposium on Plasma Chemistry, no. June, pp. 1–6, 2003.

C. Escure, M. Vardelle, and P. Fauchais, “Experimental and Theoretical Study of the Impact of Alumina Droplets on Cold and Hot Substrates,” Plasma Chemistry and Plasma Processing, vol. 23, no. 2, pp. 185–221, 2003, doi: 10.1023/A:1022976914185.

Published

2022-12-01

How to Cite

Arango, J. C. (2022). ESTUDIO DE LOS PARÁMETROS DE PROYECCIÓN TÉRMICA DE POLVOS CERÁMICOS, A PARTIR DE SIMULACIONES NUMÉRICAS. Revista Colombiana De Materiales, 1(20), 50–65. https://doi.org/10.17533/RCM/udea.rcm.n20a06