EVALUACIÓN DE LA DUREZA MEDIANTE ENSAYOS DE PERFORACIÓN CON TALADRO AUTOMATIZADO EN RECUBRIMIENTOS DE Al2O3-TiO2 ELABORADOS POR PROYECCIÓN TÉRMICA OXIACETILÉNICA

Authors

  • María Angélica Barreto Lance Universidad de Antioquia
  • Fabio Vargas Galvis Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.rcm.n21a03

Keywords:

proyección térmica oxiacetilénica, dureza, resistencia a la perforación, recubrimientos

Abstract

In this work, the hardness of alumina coatings with 13 wt.% and 43 wt.% titania, thermally sprayed by oxy-acetylene flame was measured using an automated drilling system. Indentations was produced on the surface of each coating, applying loads by steps of around 20 N to ~140 N, using a tungsten carbide-cobalt drill bit. Subsequently, the load was progressively withdrawn in steps of ~20 N until the applied force was completely discharged. During each step of loading and unloading of the applied force, the depth of the drill bit with respect to the surface of the coating was measured, and then, the hysteresis curve (force load/unload vs. penetration depth) was constructed and from this data the drilling hardness was calculated. The drilling hardness was calculated from equations proposed previously by others researchers for ceramic coatings thermally sprayed using an atmospheric plasma jet. The results demonstrated that this method is useful to measure the hardness of ceramic coatings thermally sprayed with oxy-acetylene flame, supplementing the findings of other researchers who had carried out similar studies on ceramic coatings thermally sprayed by atmospheric plasma jet.

|Abstract
= 153 veces | PDF (ESPAÑOL (ESPAÑA))
= 50 veces|

Downloads

Download data is not yet available.

References

Hirschwald, J., Die Prüfung der natürlichen Bausteine auf ihre Wetterbeständigkeit, Wilhelm Ernst & Sohn, Berlin, 1908.

Pamplona, M., Kocher M., Snethlage, R. et al., “Drilling resistance: overview and outlook”, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Vol. 158, n°3, pp. 665–676, octubre 2007.

Alfes, C., Breit, W., Schiessl, P., “Hardness testing for the measurement of stone degradation, In: Proceedings 7. International Congress on Deterioration and Conservation of Stone, pp. 771-780, Lisbon, Portugal 1992.

Dumitrescu, T.F., Pesce, G.L.A., Ball, R.J., “Optimization of drilling resistance measurement (DRM) user-controlled variables”, Materials and Structures, Vol 50, n° 243, pp. 1-11, 2017.

Theodoridou, M., Ioannou, I., Dagrain, F. “Correlation of stone properties using standardized methodologies and non-standardized micro-destructive techniques”, In: 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, pp. 1-10, 2012.

Delgado, J., Ferreira A., Rodrigues D., "Tracing of decay profiles and evaluation of stone treatments by means of microdrilling techniques”, Journal of Cultural Heritage, Vol. 3, n° 2, pp. 117-125, 2002.

Mimoso, J. , Rodrigues-Costa, D. M., “A new DRMS technique for the laboratory”, In: 8th International Conference on Non Destructive Investigations and Micronalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, pp. 1-13, Lecce-Italy, Mayo 15 – 19, 2005.

Sena da Fonseca, B., Ferreira-Pinto, A. P., Rodrigues, et al., "On the estimation of marbles weathering by thermal action using drilling resistance”, Journal of Building Engineering, Vol 42, pp.1-14 October 2021.

Nogueira, R., Ferreira, A. P., Gomes, A., “The drilling resistance measurement on the characterisation of low-strength mortars”, In: 3rd International Conference on Protection of Historical Constructions, pp. 1-12, Lisbon, Portugal, 12 – 15, July, 2017.

Al-naddaf, M, Wakid, f., and Abu Alhassan Y.,“Micro-drilling resistance measurement: A New technique to estimate the porosity of a building stone”, Mediterranean Arhaeology and Archaeometry, Vol. 13, No 1, pp. 225-233, 2013.

Palacio-Espinosa, C. C., Étude du Comportement Élastique et Plastique de Revêtements Élaborés par Projection Plasma : Mise au Point d’une Méthode de Caractérisation des Propriétés Mécaniques par Perforation et Comparaison Avec les Propriétés Obtenues par Indentation, Tesis Doctoral, Université de Limoges- France, 2016.

Palacio, C. C., Ageorges, H., Vargas, F. et al., “Effect of the mechanical properties on drilling resistance of Al2O3–TiO2 coatings manufactured by atmospheric plasma spraying”, Surface and Coatings Technology, Vol, 220, pp. 144-148, April 2013.

Belon, R., Vargas, F., Ageorges, H., “Evaluation of the mechanical behaviour of Al2O3 and Al2O3-TiO2 coatings using a benchdrill”, Revista Colombiana de Materiales, N.5 pp. 201-207, mayo 2014.

ASTM E1920, “Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings”, noviembre 2021.

Zimmer, A., “The effect of cooling rate in thermally sprayed alumina Ceramic Processing Research The effect of cooling rate in thermally sprayed alumina”, Journal of Ceramic Processing Research, Vol 11, N°2, pp. 221-224, 2010.

Vargas, F., Ageorges, H., Fournier, P., Fauchais, P., López, M. E., “Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying”, Surface and Coatings Technology, Vol. 205, N°4, pp. 1132-1136.

Cadavid, E. H., Efecto de las Características Estructurales en la Tenacidad a la Fractura de Recubrimientos Cerámicos Bimodales de Alúmina y Óxido de Titanio Elaborados Mediante Proyección Térmica, Tesis Doctoral, Universidad de Antioquia, 2023.

McPherson, R., “On the formation of thermally sprayed alumina coatings”, Journal of Materials Science, Vol 15, pp. 3141–3149, 1980.

Levin, I., Brandon, D., “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences”, Journal of the American Ceramic Society, Vol 81, N°8, pp. 1995-2012, Enero 2005.

Prins, R., “On the structure of γ-Al2O3”. Journal of Catalysis, Vol. 392, pp. 336–346, Diciembre 2020.

Yilmaz, R., Kurt, A. O., Demir, A., & Tatli, Z., “Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating”, Journal of the European Ceramic Society, Vol. 27, N° 2–3, pp. 1319–1323, 2007.

Rico, A. Múnez, C.J., Rodríguez, J., “On the relevance of microstructure in the fracture toughness of nanostructured alumina–13% titania coatings”, Surface and Coatings Technology, Vol. 243, pp. 46-50, Marzo 2014.

Goberman, D., Sohn, Y.H., Shaw, L., Jordan, E., Gell M., “Microstructure development of Al2O3–13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders”, Acta Materialia, Vol. 50, N° 5, pp. 1141-1152, Marzo 2002.

Edlmayr, V., Moser, M., Walter,C., Mitterer, C., “Thermal stability of sputtered Al2O3 coatings”, Surface and Coatings Technology, Vol. 204, N° 9–10, pp. 1576-1581, Enero 2010.

Murray, J.W., Ang, A.S.M., Pala, Z. et al., “Suspension High Velocity Oxy-Fuel (SHVOF)-Sprayed Alumina Coatings: Microstructure, Nanoindentation and Wear”. Journal of Thermal Spray Technology, Vol 25, pp. 1700–1710, Octubre 2016.

Habib, K.A., Saura, J.J., Ferrer, C., Damra, M.S., Giméne, E., Cabedo, L., "Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior”, Surface and Coatings Technology,Vol 201, N° 3–4, pp. 1436-1443, Octubre 2006.

Ghorbal, G. Ben, Tricoteaux, A., Thuault, A., Ageorges, H., Roudet, F., Chicot, D., “Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentation”, Ceramics International, Vol. 46, N° 12, pp. 19843-19851, Agosto 2020.

Published

2025-01-28

How to Cite

Barreto Lance, M. A., & Vargas Galvis, F. (2025). EVALUACIÓN DE LA DUREZA MEDIANTE ENSAYOS DE PERFORACIÓN CON TALADRO AUTOMATIZADO EN RECUBRIMIENTOS DE Al2O3-TiO2 ELABORADOS POR PROYECCIÓN TÉRMICA OXIACETILÉNICA. Revista Colombiana De Materiales, 1(21), 34–45. https://doi.org/10.17533/udea.rcm.n21a03

Most read articles by the same author(s)