Evaluación de la presencia de los genes FLO1, FLO5, FLO9 y FLO11 en cepas de Saccharomyces cerevisiae

  • Carolina Ramírez-Soto Universidad de Antioquia
  • María Alejandra García-Orozco Universidad de Antioquia.
  • Luisa M. Múnera-Porras Universidad de Antioquia
  • Lina M. López-de Ávila Escuela de Microbiología UdeA
Palabras clave: Saccharomyces cerevisiae, bioprospección, identificación bioquímica, genes FLO, PCR, floculación.

Resumen

La capacidad floculante en cepas de Saccharomyces cerevisiae es una característica importante para la industria del etanol ya que la unión célula-célula permite la fácil separación de la biomasa del producto de fermentación, reduciendo el tiempo y los costos operacionales. La capacidad que tiene S. cerevisiae para adherirse a células y superficies abióticas es conferida por un grupo específico de proteínas de la pared celular, denominadas adhesinas y codificadas por la familia de genes FLO. La expresión de dichos genes está relacionada con la respuesta a algunas condiciones de estrés que son comunes tanto a ambientes naturales como a fermentaciones industriales. Este estudio evaluó la presencia de los genes FLO1, FLO5, FLO9 y FLO11 en cepas de S. cerevisiae, aisladas de ambientes naturales, y a su vez, evidenció la importancia de la identificación de los genes FLO en cepas nativas para un control adecuado de la floculación en fermentaciones industriales.

|Resumen
= 38 veces | PDF
= 121 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Carolina Ramírez-Soto, Universidad de Antioquia

Estudiante de Microbiología Industrial y Ambiental

María Alejandra García-Orozco, Universidad de Antioquia.

Estudiante de Microbiología Industrial y Ambiental

Luisa M. Múnera-Porras, Universidad de Antioquia

Estudiante de Microbiología Industrial y Ambiental

Lina M. López-de Ávila, Escuela de Microbiología UdeA

Docente de la Escuela de Microbiología, Universidad de Antioquia

Citas

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A.Role of yeasts in table olive production. Int J Food Microbiol. 2008; 128(2): 189-96.

Chanprasartsuk OO, Prakitchaiwattana C, San-guandeekul R, Fleet GH.Autochthonous yeasts as-sociated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation. Bioresource Technol. 2010; 101(19): 7500-9.

Chu BCH, Lee H.Genetic improvement of Saccha-romyces cerevisiae for xylose fermentation. Biotechnol Adv. 2007; 25(5): 425-41.

Ferreyra MM.Estudio del proceso biotecnológi-co para la elaboración de una bebida alcohólica a partir de jugo de naranjas. [Tesis]. Departamento de tecnología de alimentos. Universidad politécnica de Valencia. 2006.

Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009; 458(7236): 337-41.

Vicente MA, Fietto LG, de Miranda Castro I, Goncal-ves dos Santos AN, Coutrim MX, Brandão RL. Iso-lation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of cachaca the Brazilian sugarcane spirit. Int J Food Microbiol. 2006; 108(1): 51-9.

Guimarães TM, Moriel DG, Machado IP, Picheth CM, Bonfim TM.Isolation and characterization of Sa-ccharomyces cerevisiae strains of winery interest. Braz. J. Pharm. Sci. 2006; 42(1): 119-26.

Bermúdez-Aguirre D, Barbosa-Cánovas GV. Inacti-vation of Saccharomyces cerevisiae in pineapple, gra-pe and cranberry juices under pulsed and continuous thermo-sonication treatments. J Food Eng. 2012; 108(3): 383-92.

Truong-Meyer XM, Strehaiano P, Riba JP. Thermal inactivation of two yeast strains heated in a straw-berry product: Experimental data and kinetic model. Chem Eng J. 1997; 65(2): 99-104.

Matsushika A, Inoue H, Kodaki T, Sawayama S.Ethanol production from xylose in engineered Sa-ccharomyces cerevisiae strains: current state and pers-pectives. Appl Microbiol Biot. 2009; 84(1): 37-53.

Halme A, Bumgarner S, Styles C, Fink GR. Gene-tic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell. 2004; 116(3): 405-15.

Bauer F, Govender P, Bester M.Yeast flocculation and its biotechnological relevance. Appl Microbiol Biot. 2010; 88(1): 31-9.

Bony M, Barre P, Blondin B. Distribution of the floc-culation protein, flop, at the cell surface during yeast growth: the availability of flop determines the floccu-lation level. Yeast. 1998; 14(1): 25-35.

Goossens KV, Stassen C, Stals I, Donohue DS, De-vreese B, De Greve H, Willaert RG.The N-terminal domain of the Flo1 flocculation protein from Saccha-romyces cerevisiae binds specifically to mannose car-bohydrates. Eukaryot Cell. 2010; 10(1): 110-7.

Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF.Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccha-romyces cerevisiae. Appl Environ Microbiol. 2008; 74(19): 6041-52.

He LY, Zhao XQ, Bai F-W.Engineering industrial Sa-ccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production. Appl Energ. 2012; 100(0): 33-40.

Soares EV.Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol. 2010; 110(1): 1-18.

Verstrepen KJ, Derdelinckx G, Verachtert H, Del-vaux FR.Yeast flocculation: what brewers should know. Appl Microbiol Biot. 2003; 61(3): 197-205.

Machado MD, Santos MS, Gouveia C, Soares HM, Soares EV.Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the floccula-tion as a separation process. Bioresource Technol. 2008; 99(7): 2107-15.

Smukalla S, Caldara M, Pochet N, Beauvais A, Gua-dagnini S, Yan C, et al.FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast. Cell. 2008; 135(4): 726-37.

Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dran-ginis AM.Characteristics of Flo11-dependent floc-culation in Saccharomyces cerevisiae. FEMS Yeast Res. 2005; 5(12): 1151-6.

Damas Buenrostro LC, Pereyra Alférez B. Control genético de la floculación de Saccharomyces cerevi-siae en proceso de fermentación industrial. Ciencia UANL, Universidad Autónoma de Nuevo León. 2009; 12(4): 417-29.

Jin YL, Speers AR.Flocculation of Saccharomyces ce-revisiae. Food Res Int. 1998; 31(6-7): 421-40.

Ngondi-Ekome J, Thiebault F, Strub JM, Van Dors-selaer A, Bonaly R, Contino-Pepin C, et al. Study on agglutinating factors from flocculent Saccha-romyces cerevisiae strains. Biochemistry. 2003; 85(1-2):133-43.

Zhao XQ, Bai FW.Yeast flocculation: New story in fuel ethanol production. Biotechnol Adv. 2009; 27(6): 849-56.

Kurêc M, Brányik T. The role of physicochemical in-teractions and FLO genes expression in the immobi-lization of industrially important yeasts by adhesion. Colloid Surface B. 2011; 84(2): 491-7.Ramírez-Soto C., García-Orozco MA, Múnera-Porras LM, López-de Ávila LM

Van Mulders SE, Christianen E, Saerens SM, Dae-nen L, Verbelen PJ, Willaert R, et al. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Research. 2009; 9(2): 178-90.

Govender P, Bester M, Bauer FF. FLO gene-depen-dent phenotypes in industrial wine yeast strains. Appl Microbiol Biot. 2010; 86(3): 931-45.

Verstrepen KJ, Reynolds TB, Fink GR.Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2004; 2(7): 533-40.

Nonklang S, Ano A, Abdel-Banat BM, Saito Y, Hos-hida H, Akada R.Construction of flocculent Kluyve-romyces marxianus strains suitable for high-tempera-ture ethanol fermentation. Biosci Biotech Bioch. 2009; 73(5): 1090-5.

Van Mulders SE, Ghequire M, Daenen L, Verbelen PJ, Verstrepen KJ, Delvaux FR. Flocculation gene variability in industrial brewer’s yeast strains. Appl Mi-crobiol Biot. 2010; 88(6): 1321-31.

Verstrepen KJ, Jansen A, Lewitter F, Fink GR. Intra-genic tandem repeats generate functional variability. Nat Genet. 2005; 37(9): 986-90.

Zhao XQ, Li Q, He LY, Li F, Que WW, Bai FW. Explo-ration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and impro-ved ethanol fermentation using stable genetically en-gineered flocculating yeast strains. Process Biochem. 2011; 47(11): 1612-9.

Liu N, Wang D, Wang Z, He XP, Zhang B. Genetic basis of flocculation phenotype conversion in Saccha-romyces cerevisiae. FEMS Yeast Research. 2007; 7(8): 1362-70.

Octavio LM, Gedeon K, Maheshri N.Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heteroge-neity in its expression. PLoS Genetics. 2009; 5(10): 1-13.

Diezmann S, Dietrich FS.Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS One. 2009; 4(4): 1-11.

Toivari MH, Salusjarvi L, Ruohonen L, Penttila M.Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microb. 2004; 70(6): 3681-6.

Willemsen M, Breynaert J, Lauwers S. Comparison of Auxacolor with API 20 C Aux in yeast identification. Clin Microbiol Infect. 1997; 3(3): 369-75.

Sand C, Rennie RP.Comparison of three commercial systems for the identification of germ-tube Negative yeast species isolated from clinical specimens. Diagn Micr Infec Dis. 1999; 33: 223-9.

Miki BL, Poon NH, James AP, Seligy VL. Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol. 1982; 150(2): 878-89.

Gomes DG, Guimarães PM, Pereira FB, Teixeira JA, Domingues L.Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations invol-ving flocculation-sedimentation. Bioresource technol. 2012; 108:162-8.

Rando OJ, Verstrepen KJ.Timescales of genetic and epigenetic inheritance. Cell. 2007; 128(4): 655-68.

Reynolds TB, Fink GR.Bakers’ yeast, a model for fun-gal biofilm formation. Science. 2001; 291(5505): 878-81.

St’ovícek V, Vachova L, Kuthan M, Palkova Z. Ge-neral factors important for the formation of struc-tured biofilm-like yeast colonies. Fungal Genet Biol. 2010; 47(12): 1012-22.

Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expres-sion and colony morphology. Mol Microbiol. 2003; 47(3): 745-54.

Gagiano M, Bauer FF, Pretorius IS.The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Re-serch. 2002; 2(4): 433-70.

Verstrepen KJ, Klis FM.Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 2006; 60(1): 5-15.Hechos Microbiol. 2013; 4(1); 1-11.

Publicado
2014-07-25
Cómo citar
Ramírez-Soto C., García-Orozco M. A., Múnera-Porras L. M., & López-de Ávila L. M. (2014). Evaluación de la presencia de los genes FLO1, FLO5, FLO9 y FLO11 en cepas de Saccharomyces cerevisiae. Hechos Microbiológicos, 4(1), 1-11. Recuperado a partir de https://revistas.udea.edu.co/index.php/hm/article/view/20089
Sección
Artículos de investigación original