Nuevos inhibidores de betalactamasas: actualidad y aplicación en la práctica

Autores/as

  • Andrés Rincón Riveros Universidad Colegio Mayor de Cundinamarca
  • Daniela Acevedo Cepeda Universidad Colegio Mayor de Cundinamarca
  • David Chaparro Lozano Universidad Colegio Mayor de Cundinamarca
  • Karoll N. Serrato Ladino Universidad Colegio Mayor de Cundinamarca

DOI:

https://doi.org/10.17533/10.17533/udea.hm.v12n1a05

Palabras clave:

antibacterianos, Beta-Lactamasas, Beta-Lactámicos, Enterobacteriaceae, farmacorresistencia bacteriana, inhibidores de beta-Lactamasas

Resumen

Introducción: Las betalactamasas son enzimas producidas por microorganismos como mecanismo de resistencia a antibióticos betalactámicos, inactivando su función mediante la hidrólisis del anillo betalactámico. Esta resistencia se ha visto en aumento lo que ha generado una problemática en salud pública por la producción de abundantes enzimas que confieren resistencia antimicrobiana, creando así la necesidad de buscar nuevos antibióticos e inhibidores de enzimas que puedan ser usados en tratamientos contra organismos productores de estas como: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, entre otros.

Objetivo: El objetivo de esta revisión bibliográfica es presentar la actualidad y desarrollo de nuevos inhibidores de betalactamasas, específicamente del grupo diazabicyclo octano (DBO); avibactam, nacubactam, zidebactam y del grupo de boronatos cíclicos como taniborbactam, vaborbactam y QPX 7728.

Métodos: Se realizó una búsqueda bibliográfica exhaustiva en diferentes bases de datos como PubMed y Sciencedirect. Para la selección de las publicaciones a analizar se aplicaron criterios de inclusión como: Términos MeSH DeCS, publicaciones únicamente en idioma inglés, aplicaciones y fecha de publicación posterior al 2010.

Resultados y conclusión: El grupo de los boronatos cíclicos da un mayor espectro de acción, ya que actúa tanto en metalobetalactamasas (MLB) como serínbetalacatamasas (SBL), mientras que los DBO actúan principalmente en serínbetalactamasas. Como conclusión principal se observa que los nuevos inhibidores abren las puertas a alternativas terapéuticas dirigidas a infecciones producidas por bacterias productoras de betalactamasas. Algunos inhibidores han sido aprobados por la agencia de Administración de Medicamentos y Alimentos de los Estados Unidos (Food and Drug Administration, FDA), mientras que otros se encuentran en fases de estudio y desarrollo, enfocando investigaciones necesarias y urgentes que hagan frente a esta problemática de salud pública mundial.

|Resumen
= 3933 veces | PDF
= 6894 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Andrés Rincón Riveros, Universidad Colegio Mayor de Cundinamarca

Docente Programa de Bacteriología y Laboratorio Clínico. 

Daniela Acevedo Cepeda, Universidad Colegio Mayor de Cundinamarca

Estudiante de Bacteriología y Laboratorio Clínico.

David Chaparro Lozano, Universidad Colegio Mayor de Cundinamarca

Estudiante de Bacteriología y Laboratorio Clínico.

Karoll N. Serrato Ladino, Universidad Colegio Mayor de Cundinamarca

Estudiante de Bacteriología y Laboratorio Clínico. 

Citas

Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4).

El Salabi A, Walsh TR, Chouchani C. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit Rev Microbiol. 2013;39(2):113–22.

Partridge SR, Tsafnat G. Automated annotation of mobile antibiotic resistance in Gram-negative bacteria: the Multiple Antibiotic Resistance Annotator (MARA) and database. J Antimicrob Chemother. 2018;73(4):883–90.

Campion M, Scully G. Antibiotic Use in the Intensive Care Unit: Optimization and De-Escalation. J Intensive Care Med. 2018;33(12):647–55.

Bush K, Jacoby GA. Updated Functional Classification of β-Lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.

Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol. 2019;17(5):295–306.

Food & Drug Administration. Novel Drug Approvals for 2015| FDA. [Internet]. 2016 [Consultado 2020 Nov 10]. Disponible en: https://www.fda.gov/drugs/ new-drugs-fda-cders-new-molecular-entities-andnew- therapeutic-biological-products/novel-drugapprovals- 2015

Food & Drug Administration. Novel Drug Approvals for 2017 | FDA. [Internet]. 2019 [Consultado 2020 Nov 10]. Disponible en: https://www.fda.gov/drugs/ new-drugs-fda-cders-new-molecular-entities-andnew- therapeutic-biological-products/novel-drugapprovals- 2017

Food & Drug Administration. Novel Drug Approvals for 2019 | FDA. [Internet]. 2020 [Consultado 2020 Nov 10]. Disponible en: https://www.fda.gov/drugs/ new-drugs-fda-cders-new-molecular-entities-andnew- therapeutic-biological-products/novel-drugapprovals- 2019

Ho S, Nguyen L, Trinh T, MacDougall C. Recognizing and Overcoming Resistance to New Beta-Lactam/Beta- Lactamase Inhibitor Combinations. Curr Infect Dis Rep. 2019;21(10):1–10.

ChemSpider. ChemSpider | Buscar y compartir quimica. [Internet]. [Consultado 2020 Nov 10]. Disponible en: http://www.chemspider.com/

Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagace-Wiens PRS, et al. Ceftazidimeavibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs. 2013;73(2):159–77.

Ehmann DE, Jahić H, Ross PL, Gu RF, Hu J, Kern G, et al. Avibactam is a covalent, reversible, non-β- lactam β-lactamase inhibitor. Proc Natl Acad Sci USA. 2012;109(29):11663–8.

Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem. 2016;8(10):1063–84.

Abboud MI, Damblon C, Brem J, Smargiasso N, Mercuri P, Gilbert B, et al. Interaction of avibactam with class B metallo-β-lactamases. Antimicrob Agents Chemother. 2016;60(10):5655–62.

Shields RK, Nguyen MH, Chen L, Press EG, Potoski BA, Marini RV, et al. Ceftazidime-avibactam is superior to other treatment regimens against carbapenemresistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2017;61(8):e00883-17.

Krishnan NP, Nguyen NQ, Papp-Wallace KM, Bonomo RA, van den Akker F. Inhibition of Klebsiella β-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study. Silman I, editor. PLoS One.2015;10(9):e0136813.

Lahiri SD, Mangani S, Durand-Reville T, Benvenuti M, De Luca F, Sanyal G, et al. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: Avibactam in complex with CTX-M-15 and pseudomonas aeruginosa AmpC β-lactamases. Antimicrob Agents Chemother. 2013;57(6):2496–505.

Stachyra T, Pechereau MC, Bruneau JM, Claudon M, Frere JM, Miossec C, et al. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non- β-lactam β-lactamase inhibitor. Antimicrob Agents Chemother.2010;54(12):5132–8.

Food & Drug Administration. FDA Drug Safety Communication: FDA cautions about dose confusion and medication error with antibacterial drug Avycaz (ceftazidime and avibactam). [Internet] 2015 [Consultado 2020 Nov 10]. Disponible en: https:// www.fda.gov/drugs/drug-safety-and-availability/ fda-drug-safety-communication-fda-cautions-aboutdose- confusion-and-medication-error-antibacterial

Rup AR, Dash AK, Patnaik S. Ceftazidime-Avibactam for Hospital Acquired Pneumonia Due to Extended Drug-Resistant Klebsiella pneumoniae. Indian Journal of Pediatrics. 2020;88:290-291.

Tsolaki V, Mantzarlis K, Mpakalis A, Malli E, Tsimpoukas F, Tsirogianni A, et al. Ceftazidimeavibactam to treat life-threatening infections by carbapenem-resistant pathogens in critically ill mechanically ventilated patients. Antimicrob Agents Chemother. 2020;64(3):e02320-19. 53 Hechos Microbiol. 2021;112(1):41-55

Temkin E, Torre-Cisneros J, Beovic B, Benito N, Giannella M, Gilarranz R, et al. Ceftazidimeavibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob Agents Chemother. 2017;61(2):e01964-16

Ruggiero M, Papp-Wallace KM, Brunetti F, Barnes MD, Bonomo RA, Gutkind G, et al. Structural insights into the inhibition of the extended-spectrum -lactamase PER-2 by avibactam. Antimicrob Agents Chemother. 2019;63(9).

Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, et al. First report of ceftazidimeavibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59(10):6605–7.

Mallalieu NL, Winter E, Fettner S, Patel K, Zwanziger E, Attley G, et al. Safety and pharmacokinetic characterization of nacubactam, a novel β-lactamase inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob Agents Chemother. 2020;64(5):e02229-19.

Morinaka A, Tsutsumi Y, Yamada M, Suzuki K, Watanabe T, Abe T, et al. OP0595, a new diazabicyclooctane: Mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam “enhancer.” J Antimicrob Chemother. 2015;70(10):2779– 86.

Barnes MD, Taracila MA, Good CE, Bajaksouzian S, Rojas LJ, Van Duin D, et al. Nacubactam enhances meropenem activity against carbapenem-resistant klebsiella pneumoniae producing KPC. Antimicrob Agents Chemother. 2019;63(8):e0043219.

Kaku N, Kosai K, Takeda K, Uno N, Morinaga Y, Hasegawa H, et al. Efficacy and Pharmacokinetics of the Combination of OP0595 and Cefepime in a Mouse Model of Pneumonia Caused by Extended-Spectrum- Beta-Lactamase-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61(7):e0082817.

Livermore DM, Mushtaq S, Warner M, Woodford N. Activity of OP0595/β-lactam combinations against Gram-negative bacteria with extended-spectrum, AmpC and carbapenem-hydrolysing β-lactamases. J Antimicrob Chemother. 2015.;70(11):3032–41.

Mushtaq S, Vickers A, Woodford N, Haldimann A, Livermore DM. Activity of nacubactam (RG6080/ OP0595) combinations against MBL-producing enterobacteriaceae. J Antimicrob Chemother. 2019;74(4):953–60.

Morinaka A, Tsutsumi Y, Yamada K, Takayama Y, Sakakibara S, Takata T, et al. In vitro and in vivo activities of the diazabicyclooctane OP0595 against AmpC-derepressed Pseudomonas aeruginosa. J Antibiot (Tokyo). 2017;70(3):246–50.

Monogue ML, Giovagnoli S, Bissantz C, Zampaloni C, Nicolau DP. In vivo efficacy of meropenem with a novel non--lactam–-lactamase inhibitor, nacubactam, against gram-negative organisms exhibiting various resistance mechanisms in a murine complicated urinary tract infection model. Antimicrob Agents Chemother. 2018;62(9).

Moya B, Barcelo IM, Bhagwat S, Patel M, Bou G, Papp-Wallace KM, et al. WCK 5107 (Zidebactam) & WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “ β- Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β- Lactamase-Producing High-Risk Clones. Antimicrob Agents Chemother. 2017;61(6):e02529.

Sader HS, Castanheira M, Huband M, Jones RN, Flamm RK. WCK 5222 (cefepime-zidebactam) antimicrobial activity against clinical isolates of gram-negative bacteria collected worldwide in 2015. Antimicrob Agents Chemother. 2017;61(5).

Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “Old” and the “New” antibiotics for MDR Gramnegative pathogens: For whom, when, and how. Front Public Heal. 2019;7:151.

Thomson KS, Abdelghani S, Snyder JW, Thomson GK. Activity of cefepime-zidebactam against multidrug-resistant (Mdr) gram-negative pathogens. Antibiotics. 2019;8(1).

Bhagwat SS, Periasamy H, Takalkar SS, Palwe SR, Khande HN, Patel M V. The Novel -Lactam Enhancer Zidebactam Augments the In Vivo Pharmacodynamic Activity of Cefepime in a Neutropenic Mouse Lung Acinetobacter baumannii Infection Model. Antimicrob Agents Chemother. 2019 Apr 1 ;63(4).

Kidd JM, Abdelraouf K, Nicolau DP. Efficacy of human-simulated bronchopulmonary exposures of cefepime, zidebactam and the combination (WCK 5222) against MDR Pseudomonas aeruginosa in a neutropenic murine pneumonia model. J Antimicrob Chemother. 2020 Jan;75(1):149–55.

Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo). 2020;73(6):329–64.

Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, et al. Imipenem–Relebactam and Meropenem–Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs. 2018;78(1):65–98.

Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, et al. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob Agents Chemother. 2017;61(4):e02260.

Hamrick JC, Docquier JD, Uehara T, Myers CL, Six DA, Chatwin CL, et al. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- And metallo- β-lactamases, restores activity of cefepime in enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020;64(3). 54 Acevedo Cepeda, Chaparro Lozano, Serrato Ladino, Rincón-Riveros

Liu B, Trout REL, Chu GH, Mcgarry D, Jackson RW, Hamrick JC, et al. Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- And Metallo- β-lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections. J Med Chem. 2020;63(6):2789–801.

U.S National Library of Medicine. Safety and Efficacy Study of Cefepime/VNRX-5133 in Patients With Complicated Urinary Tract Infections. Case Med Res. 2000;NCT03840148

Krajnc A, Brem J, Hinchliffe P, Calvopina K, Panduwawala TD, Lang PA, et al. Bicyclic Boronate VNRX-5133 Inhibits Metallo- And Serine-β-Lactamases. J Med Chem. 2019;62(18):8544–56.

Tsivkovski R, Lomovskaya O. Potency of vaborbactam is less affected than that of avibactam in strains producing KPC-2 mutations that confer resistance to ceftazidime-avibactam. Antimicrob Agents Chemother. 2020 ;64(4).

Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem. 2015;58(9):3682–92.

Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC, et al. Vaborbactam: Spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(11):e01443-17.

Sun D, Rubio-Aparicio D, Nelson K, Dudley MN, Lomovskaya O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61(12):e01694-17.

Petty LA, Henig O, Patel TS, Pogue JM, Kaye KS. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenemresistant enterobacteriaceae. Infection and Drug Resistance. Dove Medical Press; 2018;11:1461-72.

Wilson WR, Kline EG, Jones CE, Morder KT, Mettus RT, Doi Y, et al. Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63(3).e02048-18.

Llarrull LI, Testero SA, Fisher JF, Mobashery S. The future of the β-lactams. Curr Opin Microbiol. 2010;13(5):551–7.

Lee Y, Kim J, Trinh S. Meropenem-Vaborbactam (VabomereTM): Another Option for Carbapenem- Resistant Enterobacteriaceae. PT. 2019;44(3):110– 3:110-113.

Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: A therapeutic renaissance in an MDR world. Antimicrob Agents Chemother. 2013;58(4):1835–46:1835-46.

Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, et al. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against gram-negative clinical isolates in New York City. Antimicrob Agents Chemother. 2015;59(8):4856–60.

Hecker SJ, Reddy KR, Lomovskaya O, Griffith DC, Rubio-Aparicio D, Nelson K, et al. Discovery of Cyclic Boronic Acid QPX7728, an Ultrabroad-Spectrum Inhibitor of Serine and Metallo-β-lactamases. J Med Chem. 2020;63(14):7491–507:7491-7507.

Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a new ultrabroadspectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases. Antimicrob Agents Chemother. 2020;64(6).

Lomovskaya O, Tsivkovski R, Nelson K, Rubio- Aparicio D, Sun D, Totrov M, et al. Spectrum of betalactamase inhibition by the cyclic boronate QPX7728, an ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases: Enhancement of activity of multiple antibiotics against isogenic strains expressing single beta-lactamases. Antimicrob Agents Chemother. 2020;64(6).

Nelson K, Rubio-Aparicio D, Sun D, Dudley M, Lomovskaya O. In vitro activity of the ultrabroadspectrum- beta-lactamase inhibitor QPX7728 against Carbapenem-Resistant Enterobacterales with varying intrinsic and acquired resistance mechanisms. Antimicrob Agents Chemother.2020;64(8).

Brem J, Van Berkel SS, Aik W, Rydzik AM, Avison MB, Pettinati I, et al. Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β 2-lactamase inhibition. Nat Chem.2014;6(12):1084–90:1084-90.

McGeary RP, Tan DT, Schenk G. Progress toward inhibitors of metallo-β-lactamases. Future Med Chem. 2017;9(7):673–91.

Zhang D, Markoulides MS, Stepanovs D, Rydzik AM, El-Hussein A, Bon C, et al. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases. Bioorg Med Chem.2018;26(11):2928–36:2928-36.

Betts JW, Phee LM, Abdul Momin MHF, Umland KD, Brem J, Schofield CJ, et al. In vitro and in vivo activity of ML302F: A thioenolate inhibitor of VIM-subfamily metallo β-lactamases. Medchemcomm. 2016 Jan 20;7(1):190–3:190-3.

Arjomandi OK, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, et al. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur J Med Chem. 2016 May;114:318–27. Disponible en:

Everett M, Sprynski N, Coelho A, Castandet J, Bayet M, Bougnon J, et al. Discovery of a novel 55 Hechos Microbiol. 2021;112(1):41-55 metallo--lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(5).

Leiris S, Coelho A, Castandet J, Bayet M, Lozano C, Bougnon J, et al. SAR Studies Leading to the Identification of a Novel Series of Metallo- β-lactamase Inhibitors for the Treatment of Carbapenem-Resistant Enterobacteriaceae Infections That Display Efficacy in an Animal Infection Model. ACS Infect Dis.2019;5(1):131–40.

Thomas CA, Cheng Z, Yang K, Hellwarth E, Yurkiewicz CJ, Baxter FM, et al. Probing the mechanisms of inhibition for various inhibitors of metallo-β-lactamases VIM-2 and NDM-1. J Inorg Biochem. 2020;210:111123.

Somboro AM, Amoako DG, Sekyere JO, Kumalo HM, Khan R, Bester LA, et al. 1,4,7-Triazacyclononane restores the activity of β-lactam antibiotics against metallo-β-lactamase-producing Enterobacteriaceae: Exploration of potential metallo-β-lactamase inhibitors. Appl Environ Microbiol. 2019;85(3).

Azumah R, Dutta J, Somboro AM, Ramtahal M, Chonco L, Parboosing R, et al. In vitro evaluation of metal chelators as potential metallo- β -lactamase inhibitors. J Appl Microbiol. 2016;120(4):860–7.

Descargas

Publicado

2021-05-01

Cómo citar

Rincón Riveros, . A., Acevedo Cepeda, D., Chaparro Lozano, D., & Serrato Ladino, K. N. (2021). Nuevos inhibidores de betalactamasas: actualidad y aplicación en la práctica. Hechos Microbiológicos, 12(1), 41–55. https://doi.org/10.17533/10.17533/udea.hm.v12n1a05

Número

Sección

Artículos de revisión