Principales características de la genética bacteriana de Pseudomonas aeruginosa que contribuyen con su patogénesis y resistencia
DOI:
https://doi.org/10.17533/udea.hm.21091Palabras clave:
genética bacteriana, genoma accesorio, genoma constitutivo, Pseudomonas aeruginosa, patogénesisResumen
IntroduccIón: Pseudomonas aeruginosa es una bacteria que ha emergido como un patógeno de gran importancia en el ambiente hospitalario debido a la variedad de cuadros clínicos que ocasiona y su habilidad para desarrollar resistencia a diferentes grupos de antibióticos. Los avances en la biología molecular han permitido el conocimiento del genoma de esta bacteria y dilucidar los componentes que contribuyen a su patogenicidad, resistencia y persistencia en el hospedero humano.
Objetivo: Describir las características principales del genoma constitutivo y accesorio de P. aeruginosa que contribuyen con su patogénesis y capacidad de resistencia.
Metodología: Revisión bibliográfica de la literatura.
Desarrollo: El genoma de P. aeruginosa es un reflejo de su capacidad de adaptación a diferentes hospederos y ambientes en la naturaleza. Mientras que el genoma constitutivo es conservado, el genoma accesorio es altamente variable y está compuesta de elementos genéticos como plásmidos, transposones e integrones que poseen no solo genes de virulencia, sino también genes de resistencia a los antibióticos.
Conclusiones: La patogénesis y resistencia de P. aeruginosa está mediada por una diversidad de genes no solo constitutivos, sino también adquiridos, que favorecen su persistencia en diferentes ambientes y en el hospedero humano.
Descargas
Citas
Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of car-bapenem resistance in Pseudomonas aeruginosa. An-timicrob Agents Chemother. 2009; 53(11): 4783-8.
Jimeno A, Alcalde MM, Blazquez A. [Epidemic out-break of Pseudomonas aeruginosa carbepenem-resis-tant producing metallo-beta-lactamase]. Rev Clin Esp. 2011; 211(4): 187-91.
Spencer FA, Allegrone J, Goldberg RJ, Gore JM, Fox KA, Granger CB, et al. Association of statin the-rapy with outcomes of acute coronary syndromes: the GRACE study. Ann Intern Med. 2004; 140(11): 857-66.
Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front Microbiol. 2011; 2:150.
Kung VL, Ozer EA, Hauser AR. The accessory geno-me of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010; 74(4): 621-41.
Bezuidt OK, Klockgether J, Elsen S, Attree I, Daven-port CF, Tümmler B. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB. BMC Ge-nomics. 2013; 14:416.
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406(6799): 959-64.
HOLLOWAY BW. Genetic recombination in Pseudo-monas aeruginosa. J Gen Microbiol. 1955; 13(3): 572-81.
NCBI (National Center for Biotechnology Informa-tion). Genome Pseudomonas aeruginosa. [Acceso: 10 de octubre de 2013]. Disponible en: http://www.ncbi.nlm.nih.gov/genome/?term=pseudomonas+aeruginosa.
P2CS (Prokaryotic 2-Component Systems). Pseu-domonas aeruginosa. [Acceso: 10 de octubre 2013]. Disponible en: http://www.p2cs.org/.
Lee JY, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents. 2012; 40(2): 168-72.
Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM. Structure and function of OprD protein in Pseu-domonas aeruginosa: from antibiotic resistance to no-vel therapies. Int J Med Microbiol. 2012; 302(2): 63-8.
Tomás M, Doumith M, Warner M, Turton JF, Becei-ro A, Bou G, et al. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Anti-microb Agents Chemother. 2010; 54(5): 2219-24.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Third Informational Supplement. CLSI document M100-S23. January 2013.
Vila J, Marco F. [Interpretive reading of the non-fer-menting gram-negative bacilli antibiogram]. Enferm Infecc Microbiol Clin. 2010; 28(10): 726-36.
Nikaido H, Takatsuka Y. Mechanisms of RND mul-tidrug efflux pumps. Biochim Biophys Acta. 2009; 1794(5): 769-81.
Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and rela-ted bacteria: unanswered questions. Genet Mol Res. 2003; 2(1): 48-62.
Moulton RC, Montie TC. Chemotaxis by Pseudomo-nas aeruginosa. J Bacteriol. 1979; 137(1): 274-80.
Kiewitz C, Tümmler B. Sequence diversity of Pseu-domonas aeruginosa: impact on population structure and genome evolution. J Bacteriol. 2000; 182(11): 3125-35.
Riera E, Cabot G, Mulet X, García-Castillo M, del Campo R, Juan C, et al. Pseudomonas aeruginosacarbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripe-nem. J Antimicrob Chemother. 2011; 66(9): 2022-7.
Cuzon G, Naas T, Villegas MV, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother. 2011; 55(11): 5350-3.
Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel car-bapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001; 45(4): 1151-61.
Arnold RS, Thom KA, Sharma S, Phillips M, Kris-tie Johnson J, Morgan DJ. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J. 2011; 104(1): 40-5.
Tato M, Coque TM, Baquero F, Cantón R. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseu-domonas aeruginosa. Antimicrob Agents Chemother. 2010; 54(1): 320-7.
Aubert D, Naas T, Nordmann P. IS1999 increases expression of the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. J Bacteriol. 2003; 185(17): 5314-9.
Shen L, Gao X, Wei J, Chen L, Zhao X, Li B, et al. PA2800 plays an important role in both antibiotic susceptibility and virulence in Pseudomonas aerugi-nosa. Curr Microbiol. 2012; 65(5): 601-9.
Martinez E, Marquez C, Ingold A, Merlino J, Djord-jevic SP, Stokes HW, et al. Diverse mobilized class 1 integrons are common in the chromosomes of patho-genic Pseudomonas aeruginosa clinical isolates. Anti-microb Agents Chemother. 2012; 56(4): 2169-72.
Janvier F, Jeannot K, Tessé S, Robert-Nicoud M, De-lacour H, Rapp C, et al. Molecular characterization of blaNDM-1 in a ST235 Pseudomonas aeruginosa iso-late, France. Antimicrob Agents Chemother. 2013.
Ingold AJ, Castro M, Nabón A, Borthagaray G, Már-quez C. [VIM-2 metallo-β-lactamase gen detection in a class 1 integron associated to bla(CTX-M-2) in a Pseudomonas aeruginosa clinical isolate in Uruguay: first communication]. Rev Argent Microbiol. 2011; 43(3): 198-202.
Ruiz-Martínez L, López-Jiménez L, Fusté E, Vinuesa T, Martínez JP, Viñas M. Class 1 integrons in environ-mental and clinical isolates of Pseudomonas aerugino-sa. Int J Antimicrob Agents. 2011; 38(5): 398-402.Vanegas JM., Jiménez JN.
Hocquet D, Llanes C, Thouverez M, Kulasekara HD, Bertrand X, Plésiat P, et al. Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog. 2012; 8(6): e1002778.
Zanetti MO, Martins VV, Pitondo-Silva A, Stehling EG. Antimicrobial resistance, plasmids and class 1 and 2 integrons occurring in Pseudomonas aeruginosaisolated from Brazilian aquatic environments. Water Sci Technol. 2013; 67(5): 1144-9.
Ranjbar R, Owlia P, Saderi H, Bameri Z, Izadi M, Jonaidi N, et al. Isolation of clinical strains ofPseudomonas aeruginosa harboring different plas-mids. Pak J Biol Sci. 2007; 10(17): 3020-2.
Stokes HW, Martinez E, Roy Chowdhury P, Djord-jevic S. Class 1 integron-associated spread of resis-tance regions in Pseudomonas aeruginosa: plasmid or chromosomal platforms? J Antimicrob Chemother. 2012; 67(7): 1799-800.
Naas T, Bonnin RA, Cuzon G, Villegas MV, Nord-mann P. Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. J Antimicrob Chemother. 2013.
Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol. 2012; 78(12): 4510-5.
James CE, Fothergill JL, Kalwij H, Hall AJ, Cottell J, Brockhurst MA, et al. Differential infection proper-ties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol. 2012; 12:216.
Vaca-Pacheco S, Paniagua-Contreras GL, García-González O, de la Garza M. The clinically isolated FIZ15 bacteriophage causes lysogenic conversion in Pseudomonas aeruginosa PAO1. Curr Microbiol. 1999; 38(4): 239-43.
Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosabiofilm development. J Bacteriol. 2004; 186(23): 8066-73.
Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Micro-biol. 2000; 38(2): 213-31.
Harper DR, Enright MC. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol. 2011; 111(1): 1-7.
Krylov V, Shaburova O, Krylov S, Pleteneva E. A genetic approach to the development of new the-rapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses. 2013; 5(1): 15-53.
Soothill J. Use of bacteriophages in the treatment of Pseudomonas aeruginosa infections. Expert Rev Anti Infect Ther. 2013; 11(9): 909-15.Hechos Microbiol. 2013; 4(2); 98-105.