Main features of the bacterial genetics of Pseudomonas aeruginosathat contribute to its pathogenesis and resistance

Authors

  • Johanna Marcela Vanegas M. University of Antioquia
  • Judy Natalia Jiménez Q. University of Antioquia

DOI:

https://doi.org/10.17533/udea.hm.21091

Keywords:

bacteria genetics, accesory genome, core genome, Pseudomonas aeruginosa, antimicrobial resistance, pathogenesis

Abstract

Pseudomonas aeruginosa has emerged as an important pathogen in the hospital environment due to its role in the origin of diverse clinical conditions and its development of antibiotic resistance. Advances in molecular biology have enabled genome knowledge of this microorganism and elucidated the components that contribute to its pathogenesis and resistance.
 
Objective: Describe the main features of core and accessory ge-nomes of P. aeruginosa that promote its pathogenesis and resistance.
Methodology: Narrative review.
 
Development: Genome of P. aeruginosa shows its ability to adapt to different hosts and environments in nature. While the core genome is conserved, the accessory geno-me is highly variable and is composed of genetic elements as plasmids, transposons and integrons, which do not possess virulence genes only, but also antibiotic resistance genes.
 
Conclusions: Pathogenesis and resistance of P. aeruginosa are me-diated by diverse genes both constitutive and acquired that promote its persistence in nature and human hosts. 
|Abstract
= 3058 veces | PDF (ESPAÑOL (ESPAÑA))
= 1473 veces|

Downloads

Download data is not yet available.

Author Biographies

Johanna Marcela Vanegas M. , University of Antioquia

Bacterial Molecular Epidemiology Line, Molecular Microbiology Group, Basic and Applied Microbiology Group (MICROBA), School of Microbiology, University of Antioquia.

Judy Natalia Jiménez Q. , University of Antioquia

Bacterial Molecular Epidemiology Line, Molecular Microbiology Group, Basic and Applied Microbiology Group (MICROBA), School of Microbiology, University of Antioquia.

References

Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of car-bapenem resistance in Pseudomonas aeruginosa. An-timicrob Agents Chemother. 2009; 53(11): 4783-8.

Jimeno A, Alcalde MM, Blazquez A. [Epidemic out-break of Pseudomonas aeruginosa carbepenem-resis-tant producing metallo-beta-lactamase]. Rev Clin Esp. 2011; 211(4): 187-91.

Spencer FA, Allegrone J, Goldberg RJ, Gore JM, Fox KA, Granger CB, et al. Association of statin the-rapy with outcomes of acute coronary syndromes: the GRACE study. Ann Intern Med. 2004; 140(11): 857-66.

Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front Microbiol. 2011; 2:150.

Kung VL, Ozer EA, Hauser AR. The accessory geno-me of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010; 74(4): 621-41.

Bezuidt OK, Klockgether J, Elsen S, Attree I, Daven-port CF, Tümmler B. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB. BMC Ge-nomics. 2013; 14:416.

Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406(6799): 959-64.

HOLLOWAY BW. Genetic recombination in Pseudo-monas aeruginosa. J Gen Microbiol. 1955; 13(3): 572-81.

NCBI (National Center for Biotechnology Informa-tion). Genome Pseudomonas aeruginosa. [Acceso: 10 de octubre de 2013]. Disponible en: http://www.ncbi.nlm.nih.gov/genome/?term=pseudomonas+aeruginosa.

P2CS (Prokaryotic 2-Component Systems). Pseu-domonas aeruginosa. [Acceso: 10 de octubre 2013]. Disponible en: http://www.p2cs.org/.

Lee JY, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents. 2012; 40(2): 168-72.

Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM. Structure and function of OprD protein in Pseu-domonas aeruginosa: from antibiotic resistance to no-vel therapies. Int J Med Microbiol. 2012; 302(2): 63-8.

Tomás M, Doumith M, Warner M, Turton JF, Becei-ro A, Bou G, et al. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Anti-microb Agents Chemother. 2010; 54(5): 2219-24.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Third Informational Supplement. CLSI document M100-S23. January 2013.

Vila J, Marco F. [Interpretive reading of the non-fer-menting gram-negative bacilli antibiogram]. Enferm Infecc Microbiol Clin. 2010; 28(10): 726-36.

Nikaido H, Takatsuka Y. Mechanisms of RND mul-tidrug efflux pumps. Biochim Biophys Acta. 2009; 1794(5): 769-81.

Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and rela-ted bacteria: unanswered questions. Genet Mol Res. 2003; 2(1): 48-62.

Moulton RC, Montie TC. Chemotaxis by Pseudomo-nas aeruginosa. J Bacteriol. 1979; 137(1): 274-80.

Kiewitz C, Tümmler B. Sequence diversity of Pseu-domonas aeruginosa: impact on population structure and genome evolution. J Bacteriol. 2000; 182(11): 3125-35.

Riera E, Cabot G, Mulet X, García-Castillo M, del Campo R, Juan C, et al. Pseudomonas aeruginosacarbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripe-nem. J Antimicrob Chemother. 2011; 66(9): 2022-7.

Cuzon G, Naas T, Villegas MV, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother. 2011; 55(11): 5350-3.

Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel car-bapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001; 45(4): 1151-61.

Arnold RS, Thom KA, Sharma S, Phillips M, Kris-tie Johnson J, Morgan DJ. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J. 2011; 104(1): 40-5.

Tato M, Coque TM, Baquero F, Cantón R. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseu-domonas aeruginosa. Antimicrob Agents Chemother. 2010; 54(1): 320-7.

Aubert D, Naas T, Nordmann P. IS1999 increases expression of the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. J Bacteriol. 2003; 185(17): 5314-9.

Shen L, Gao X, Wei J, Chen L, Zhao X, Li B, et al. PA2800 plays an important role in both antibiotic susceptibility and virulence in Pseudomonas aerugi-nosa. Curr Microbiol. 2012; 65(5): 601-9.

Martinez E, Marquez C, Ingold A, Merlino J, Djord-jevic SP, Stokes HW, et al. Diverse mobilized class 1 integrons are common in the chromosomes of patho-genic Pseudomonas aeruginosa clinical isolates. Anti-microb Agents Chemother. 2012; 56(4): 2169-72.

Janvier F, Jeannot K, Tessé S, Robert-Nicoud M, De-lacour H, Rapp C, et al. Molecular characterization of blaNDM-1 in a ST235 Pseudomonas aeruginosa iso-late, France. Antimicrob Agents Chemother. 2013.

Ingold AJ, Castro M, Nabón A, Borthagaray G, Már-quez C. [VIM-2 metallo-β-lactamase gen detection in a class 1 integron associated to bla(CTX-M-2) in a Pseudomonas aeruginosa clinical isolate in Uruguay: first communication]. Rev Argent Microbiol. 2011; 43(3): 198-202.

Ruiz-Martínez L, López-Jiménez L, Fusté E, Vinuesa T, Martínez JP, Viñas M. Class 1 integrons in environ-mental and clinical isolates of Pseudomonas aerugino-sa. Int J Antimicrob Agents. 2011; 38(5): 398-402.Vanegas JM., Jiménez JN.

Hocquet D, Llanes C, Thouverez M, Kulasekara HD, Bertrand X, Plésiat P, et al. Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog. 2012; 8(6): e1002778.

Zanetti MO, Martins VV, Pitondo-Silva A, Stehling EG. Antimicrobial resistance, plasmids and class 1 and 2 integrons occurring in Pseudomonas aeruginosaisolated from Brazilian aquatic environments. Water Sci Technol. 2013; 67(5): 1144-9.

Ranjbar R, Owlia P, Saderi H, Bameri Z, Izadi M, Jonaidi N, et al. Isolation of clinical strains ofPseudomonas aeruginosa harboring different plas-mids. Pak J Biol Sci. 2007; 10(17): 3020-2.

Stokes HW, Martinez E, Roy Chowdhury P, Djord-jevic S. Class 1 integron-associated spread of resis-tance regions in Pseudomonas aeruginosa: plasmid or chromosomal platforms? J Antimicrob Chemother. 2012; 67(7): 1799-800.

Naas T, Bonnin RA, Cuzon G, Villegas MV, Nord-mann P. Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. J Antimicrob Chemother. 2013.

Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol. 2012; 78(12): 4510-5.

James CE, Fothergill JL, Kalwij H, Hall AJ, Cottell J, Brockhurst MA, et al. Differential infection proper-ties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol. 2012; 12:216.

Vaca-Pacheco S, Paniagua-Contreras GL, García-González O, de la Garza M. The clinically isolated FIZ15 bacteriophage causes lysogenic conversion in Pseudomonas aeruginosa PAO1. Curr Microbiol. 1999; 38(4): 239-43.

Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosabiofilm development. J Bacteriol. 2004; 186(23): 8066-73.

Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Micro-biol. 2000; 38(2): 213-31.

Harper DR, Enright MC. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol. 2011; 111(1): 1-7.

Krylov V, Shaburova O, Krylov S, Pleteneva E. A genetic approach to the development of new the-rapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses. 2013; 5(1): 15-53.

Soothill J. Use of bacteriophages in the treatment of Pseudomonas aeruginosa infections. Expert Rev Anti Infect Ther. 2013; 11(9): 909-15.Hechos Microbiol. 2013; 4(2); 98-105.

Published

2014-11-19

How to Cite

Vanegas M. , J. M., & Jiménez Q. , J. N. (2014). Main features of the bacterial genetics of Pseudomonas aeruginosathat contribute to its pathogenesis and resistance. Hechos Microbiológicos, 4(2), 98–105. https://doi.org/10.17533/udea.hm.21091

Issue

Section

Artículos de revisión

Most read articles by the same author(s)