Immunodulatory and microbicidal effect of mesenchymal stromal cells obtained from bone marrow

Authors

DOI:

https://doi.org/10.17533/udea.hm.v11n1a05

Keywords:

mesenchymal stromal cells, mesenchymal stem cells, immunomodulation, microbicidal effect

Abstract

Mesenchymal stromal cells or mesenchymal stem cells obtained from bone marrow (BMMSCs) are adult stem cells with interesting qualities in regenerative medicine, since they have the ability to differentiate between mesenchymal tissue cells and lung, neuronal and liver tissue cells, among others. Likewise, other features consist of immunomodulatory properties based on migration to inflamed tissue, the release of anti-inflammatory molecules, the differentiation between specific tissue, and the release of exosomes. Finally, some studies have explored their microbicidal capacity, which can be direct (the release of antimicrobial molecules and processes such as phagocytosis) or indirect (the release of mediators that activate other cells or immune mechanisms). Considering the aforementioned properties, BMMSCs have been postulated as a promising therapeutic alternative in the treatment of autoimmune and inflammatory diseases, either by autologous transplants or purification of their exosomes. This review aims to describe the main molecular and immunological mechanisms associated with the immunomodulatory and microbicidal capacity of BMMSCs in experimental models of some infectious diseases such as paracoccidioidomycosis, candidiasis, aspergillosis, tuberculosis, and COVID19 among others, with the aim of their being proposed for future human clinical trials.

|Abstract
= 749 veces | PDF (ESPAÑOL (ESPAÑA))
= 505 veces|

Downloads

Download data is not yet available.

Author Biography

Julián Camilo Arango Rincón, University of Antioquia

Group of Medical and Experimental Mycology, Corporation for Biological Research. School of Microbiology, University of Antioquia.

References

Herzog EL, Chai L, Krause DS. Plasticity of marrowderived stem cells. Blood. 2003;102(10):3483–93.

Ullah M, Stich S, Notter M, Eucker J, Sittinger M, Ringe J. Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes. Differentiation. 2013;85(3):78–90.

Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18(9):980–2.

Wang J, Chen Z, Sun M, Xu H, Gao Y, Liu J, et al. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell. 2020; 64:101330.

Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. 2012 Feb;18(2):128-34. doi: 10.1016/j.molmed.2011.10.004.

Silveira G da P, Ishimura ME, Teixeira D, Galindo LT, Sardinha AA, Porcionatto M, et al. Improvement of mesenchymal stem cell immunomodulatory properties by heat-killed Propionibacterium acnes via TLR2. Front Mol Neurosci. 2019;11:1-14.

Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.

Merimi M, Lagneaux L, Moussa Agha D, Lewalle P, Meuleman N, Burny A, et al. Mesenchymal stem/stromal cells in immunity and disease: a better understanding for an improved use. J Clin Med. 2020;9(1516):1–4. doi: 10.3390/jcm9051516

Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol. 2017;8(339):1–15.

Oryan A, Kamali A, Moshirib A, Eslaminejad MB. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs. 2017;204(2):59–83.

Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 2016;25(5):829–48.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

Kong L, Wang Y, Ji Y, Chen J, Cui J, Shen W. Isolation and Characterization of Human Suture Mesenchymal Stem Cells In Vitro. Int J Stem Cells. 2020; 1–18. doi: 10.15283/ijsc20024.

Patel AR, Patra F, Shah NP, Shukla D. Biological control of mycotoxins by probiotic lactic acid bacteria. Dynamism dairy Ind Consum demands. 2017; 2–4. https:// www.researchgate.net/publication/314237943_Biological_ control_of_mycotoxins_by_probiotic_lactic_ acid_bacteria.

Stagg J. Immune regulation by mesenchymal stem cells: Two sides to the coin. Tissue Antigens. 2007;69(1):1–9.

Da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008 Sep;26(9):2287-99. doi: 10.1634/stemcells. 2007-1122. Epub 2008 Jun 19. PMID: 18566331.

Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis. 2016;7(1):1–11.

Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell. 2008;2(2):141–50.

Han KH, Ro H, Hong JH, Lee EM, Cho B, Yeom HJ, et al. Immunosuppressive mechanisms of embryonic stem cells and mesenchymal stem cells in alloimmune response. Transpl Immunol. 2011;25(1):7–15.

Castro-Manrreza ME, Montesinos JJ, Velasco-Velazquez MA. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications. J Immunol Res. 2015; 394917:1-20. doi: 10.1155/2015/394917.

Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, et al. Inflammatory Cytokine-Induced Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule- 1 in Mesenchymal Stem Cells Are Critical for Immunosuppression. J Immunol. 2010;184(5):2321–8.

Najar M, Raicevic G, Kazan HF, de Bruyn C, Bron D, Toungouz M, et al. Immune-Related Antigens, Surface Molecules and Regulatory Factors in Human-Derived Mesenchymal Stromal Cells: The Expression and Impact of Inflammatory Priming. Stem Cell Rev Reports. 2012;8(4):1188–98.

Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16.

Abreu SC, Antunes MA, Pelosi P, Morales MM, Rocco PRM. Mechanisms of cellular therapy in respiratory diseases. Intensive Care Med. 2011;37(9):1421–31.

Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, et al. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res. 2010;11(1):1-14. doi: 10.1186/1465-9921-11-16.

Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):1–15.

Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, et al. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med. 2020;9(2):1- 19. doi: 10.3390/jcm9020436.

Maravillas-Montero JL, Martinez-Cortes I. Regulation of immune responses by exosomes derived from antigen presenting cells. Rev Alerg Mex. 2017;64(4):463–76.

Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: sources, characteristics, and application in regenerative medicine. Life Sci. 2020;9(1157):1–45.

He X, Dong Z, Cao Y, Wang Y, Liu S, L L, et al. MSCDerived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells Int. 2019;2019:1–16. doi: 10.1155/2019/7132708.

Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020;9(5):1–45.

Villatoro AJ, Alcoholado C, Martin-Astorga MC, Fernandez V, Cifuentes M, Becerra J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol. 2019;208:6–15.

Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–52.

Nenasheva T, Nikolaev A, Diykanov D, Sukhanova A, Tcyganov E, Panteleev A, et al. The introduction of mesenchymal stromal cells induces different immunological responses in the lungs of healthy and M. tuberculosis infected mice. PLoS One. 2017;12(6):1–19.

Cho SY, Kwon EY, Choi SM, Lee DG, Park C, Park SH, et al. Immunomodulatory effect of mesenchymal stem cells on the immune response of macrophages stimulated by Aspergillus Fumigatus Conidia. Med Mycol. 2016;54(4):377-383.

Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, et al. Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif. 2015;48(2):239–48.

Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, Jahangiryan A, Jadidi F, Jadidi Kouhbanani MA, et al. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol. 2020;10.1002/jcp.29803.

Yang R, Liu Y, Kelk P, Qu C, Akiyama K, Chen C, et al. A subset of IL-17 + mesenchymal stem cells possesses anti-Candida albicans effect. Cell Res. 2013;23(1):107– 21.

Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, et al. mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med. 2014;3(2):194– 205.

Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin. PLoS Med. 2007;4(9):1525–37.

Arango J, Puerta-Arias J, Pino-Tamayo J, Arboleda- Toro D, Gonzalez A. bone marrow-derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response. Med Mycol. 2018;56(7):884–95.

Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Salazar- Pelaez LM, Rojas M, Gonzalez A. Impaired antifibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis. 2017;11(10):1–16.

Rodriguez-Echeverri C, Puerta-Arias JD, Gonzalez A. Paracoccidioides Brasiliensis Activates Mesenchymal Stem Cells Through TLR2, TLR4, and Dectin-1. Med Mycol. 2020; doi:10.1093/mmy/myaa039.

Tsuchiya A, Takeuchi S, Iwasawa T, Kumagai M, Sato T, Motegi S, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen. 2020; doi: 10.1186/s41232-020-00121-y

Bulut O, Gursel I. Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection. Turk J Biol. 2020;44(3):273-282.

Published

2020-10-26

How to Cite

Arango Rincón, J. C. (2020). Immunodulatory and microbicidal effect of mesenchymal stromal cells obtained from bone marrow. Hechos Microbiológicos, 11(1 y 2), 72–81. https://doi.org/10.17533/udea.hm.v11n1a05

Issue

Section

Artículos de revisión