Efecto inmunodulador y microbicida de las células mesenquimales estromales obtenidas de médula ósea

Autores/as

DOI:

https://doi.org/10.17533/udea.hm.v11n1a05

Palabras clave:

células mesenquimales estromales, células madre mesenquimales, inmunomodulación, efecto microbicida

Resumen

Las células mesenquimales estromales obtenidas de medula ósea (BMMSCs) o células madre mesenquimales son células madre adultas con interesantes cualidades en medicina regenerativa ya que poseen la capacidad de diferenciarse a células de tejidos mesenquimales y otros como parénquima pulmonar, neuronal y células hepáticas entre otras. Así mismo otro de sus atributos consiste en su capacidad inmunomoduladora, basada en: migración a tejido inflamado, liberación de moléculas anti-inflamatorias, diferenciación a tejido específico y liberación de exosomas. Finalmente, otra de las características recientemente exploradas, consiste en su capacidad microbicida, la cual puede ser de forma directa (liberación de moléculas antimicrobianas y procesos como fagocitosis) o indirecta (liberación de mediadores que activan otras células o mecanismos inmunes). Teniendo en cuenta las propiedades mencionadas, las BMMSCS han sido postuladas como una prometedora alternativa terapéutica en el tratamiento de enfermedades autoinmunes e inflamatorias ya sea mediante trasplantes autólogos o purificación de sus exosomas. Esta revisión tiene como objetivo describir los principales mecanismos moleculares e inmunológicos asociados a la capacidad inmunomoduladora y microbicida de las BMMSCs en modelos experimentales de algunas enfermedades infecciosas como pacoccidioidomicosis, candidiasis, aspergilosis, tuberculosis y COVID19 entre otros, con el objetivo de ser propuestas para ensayos clínicos en humanos a futuro.

|Resumen
= 583 veces | PDF
= 463 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Julián Camilo Arango Rincón, Universidad de Antioquia

Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas. Escuela de Microbiología, Universidad de Antioquia.

Citas

Herzog EL, Chai L, Krause DS. Plasticity of marrowderived stem cells. Blood. 2003;102(10):3483–93.

Ullah M, Stich S, Notter M, Eucker J, Sittinger M, Ringe J. Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes. Differentiation. 2013;85(3):78–90.

Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18(9):980–2.

Wang J, Chen Z, Sun M, Xu H, Gao Y, Liu J, et al. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell. 2020; 64:101330.

Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. 2012 Feb;18(2):128-34. doi: 10.1016/j.molmed.2011.10.004.

Silveira G da P, Ishimura ME, Teixeira D, Galindo LT, Sardinha AA, Porcionatto M, et al. Improvement of mesenchymal stem cell immunomodulatory properties by heat-killed Propionibacterium acnes via TLR2. Front Mol Neurosci. 2019;11:1-14.

Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.

Merimi M, Lagneaux L, Moussa Agha D, Lewalle P, Meuleman N, Burny A, et al. Mesenchymal stem/stromal cells in immunity and disease: a better understanding for an improved use. J Clin Med. 2020;9(1516):1–4. doi: 10.3390/jcm9051516

Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol. 2017;8(339):1–15.

Oryan A, Kamali A, Moshirib A, Eslaminejad MB. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs. 2017;204(2):59–83.

Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 2016;25(5):829–48.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

Kong L, Wang Y, Ji Y, Chen J, Cui J, Shen W. Isolation and Characterization of Human Suture Mesenchymal Stem Cells In Vitro. Int J Stem Cells. 2020; 1–18. doi: 10.15283/ijsc20024.

Patel AR, Patra F, Shah NP, Shukla D. Biological control of mycotoxins by probiotic lactic acid bacteria. Dynamism dairy Ind Consum demands. 2017; 2–4. https:// www.researchgate.net/publication/314237943_Biological_ control_of_mycotoxins_by_probiotic_lactic_ acid_bacteria.

Stagg J. Immune regulation by mesenchymal stem cells: Two sides to the coin. Tissue Antigens. 2007;69(1):1–9.

Da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008 Sep;26(9):2287-99. doi: 10.1634/stemcells. 2007-1122. Epub 2008 Jun 19. PMID: 18566331.

Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis. 2016;7(1):1–11.

Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell. 2008;2(2):141–50.

Han KH, Ro H, Hong JH, Lee EM, Cho B, Yeom HJ, et al. Immunosuppressive mechanisms of embryonic stem cells and mesenchymal stem cells in alloimmune response. Transpl Immunol. 2011;25(1):7–15.

Castro-Manrreza ME, Montesinos JJ, Velasco-Velazquez MA. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications. J Immunol Res. 2015; 394917:1-20. doi: 10.1155/2015/394917.

Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, et al. Inflammatory Cytokine-Induced Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule- 1 in Mesenchymal Stem Cells Are Critical for Immunosuppression. J Immunol. 2010;184(5):2321–8.

Najar M, Raicevic G, Kazan HF, de Bruyn C, Bron D, Toungouz M, et al. Immune-Related Antigens, Surface Molecules and Regulatory Factors in Human-Derived Mesenchymal Stromal Cells: The Expression and Impact of Inflammatory Priming. Stem Cell Rev Reports. 2012;8(4):1188–98.

Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16.

Abreu SC, Antunes MA, Pelosi P, Morales MM, Rocco PRM. Mechanisms of cellular therapy in respiratory diseases. Intensive Care Med. 2011;37(9):1421–31.

Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, et al. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res. 2010;11(1):1-14. doi: 10.1186/1465-9921-11-16.

Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):1–15.

Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, et al. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med. 2020;9(2):1- 19. doi: 10.3390/jcm9020436.

Maravillas-Montero JL, Martinez-Cortes I. Regulation of immune responses by exosomes derived from antigen presenting cells. Rev Alerg Mex. 2017;64(4):463–76.

Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: sources, characteristics, and application in regenerative medicine. Life Sci. 2020;9(1157):1–45.

He X, Dong Z, Cao Y, Wang Y, Liu S, L L, et al. MSCDerived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells Int. 2019;2019:1–16. doi: 10.1155/2019/7132708.

Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020;9(5):1–45.

Villatoro AJ, Alcoholado C, Martin-Astorga MC, Fernandez V, Cifuentes M, Becerra J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol. 2019;208:6–15.

Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–52.

Nenasheva T, Nikolaev A, Diykanov D, Sukhanova A, Tcyganov E, Panteleev A, et al. The introduction of mesenchymal stromal cells induces different immunological responses in the lungs of healthy and M. tuberculosis infected mice. PLoS One. 2017;12(6):1–19.

Cho SY, Kwon EY, Choi SM, Lee DG, Park C, Park SH, et al. Immunomodulatory effect of mesenchymal stem cells on the immune response of macrophages stimulated by Aspergillus Fumigatus Conidia. Med Mycol. 2016;54(4):377-383.

Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, et al. Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif. 2015;48(2):239–48.

Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, Jahangiryan A, Jadidi F, Jadidi Kouhbanani MA, et al. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol. 2020;10.1002/jcp.29803.

Yang R, Liu Y, Kelk P, Qu C, Akiyama K, Chen C, et al. A subset of IL-17 + mesenchymal stem cells possesses anti-Candida albicans effect. Cell Res. 2013;23(1):107– 21.

Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, et al. mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med. 2014;3(2):194– 205.

Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin. PLoS Med. 2007;4(9):1525–37.

Arango J, Puerta-Arias J, Pino-Tamayo J, Arboleda- Toro D, Gonzalez A. bone marrow-derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response. Med Mycol. 2018;56(7):884–95.

Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Salazar- Pelaez LM, Rojas M, Gonzalez A. Impaired antifibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis. 2017;11(10):1–16.

Rodriguez-Echeverri C, Puerta-Arias JD, Gonzalez A. Paracoccidioides Brasiliensis Activates Mesenchymal Stem Cells Through TLR2, TLR4, and Dectin-1. Med Mycol. 2020; doi:10.1093/mmy/myaa039.

Tsuchiya A, Takeuchi S, Iwasawa T, Kumagai M, Sato T, Motegi S, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen. 2020; doi: 10.1186/s41232-020-00121-y

Bulut O, Gursel I. Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection. Turk J Biol. 2020;44(3):273-282.

Descargas

Publicado

2020-10-26

Cómo citar

Arango Rincón, J. C. (2020). Efecto inmunodulador y microbicida de las células mesenquimales estromales obtenidas de médula ósea. Hechos Microbiológicos, 11(1 y 2), 72–81. https://doi.org/10.17533/udea.hm.v11n1a05

Número

Sección

Artículos de revisión